COMMITTENTE:

ALTA SORVEGLIANZA:

CUP: F81H91000000008

GENERAL CONTRACTOR:

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N. 443/01

LINEA A.V. /A.C. TORINO – VENEZIA Tratta MILANO – VERONA Lotto funzionale Brescia-Verona

PROGETTO ESECUTIVO

dalla Unione Europea

Report Monitoraggio Ambientale Acque Superficiali – Anni 2017/2018 - Fase AO Regione Veneto LC1

GENERAL CONTRACTOR				DIR	DIRETTORE LAVORI			
Consorzio Cepav due					Valide-per-cestruzione			
Data:	(irig.	i. Iar a nt	a)	Data	a:			
COMMESSA	LOTTO FASE	ENTE	TIPC	DOC	OPERA/DISCIPLINA	PROGR	REV	
I N O R	1 1 E	E 2	2 P	E	И В 1 0 В 5	0 0 1	A	
PROGETTAZIONE					(20)	B.E.C.	LEPROGETTISTACE	
Rev. Descrizi	. 2 50 5	edatto	Data	Verificato		Histo	DOTT. ING.	
A Emissi	one	Indam 🔑	28/02/19	Lazzari		28/02/19	0.00//	
В					1 1230	1.	Any Mr. 2019 Springe: A	
С							Data: 28/02/1996	
CIG. 751447334A File: INOR11EE2PEMB10B5001A								

Progetto Lotto Codifica Documento Rev. Foglio Doc. N. INOR 11 EE2PEMB10B5001 A 2 di 121

INDICE

1	PREMI	ESSA	5
2	RIFER	IMENTI NORMATIVI	6
3	STAZI	ONI E COMPONENTI OGGETTO D'INDAGINE	9
4	METO	DI D'ESECUZIONE DEI RILIEVI IN CAMPO E DI ANALISI	. 10
4.	1 M	ETODICHE DI RILIEVO	. 10
	4.1.1	Misure in situ	. 10
	4.1.2	Analisi di laboratorio	. 10
	4.1.3	Misure di portata e velocità media della corrente	. 12
	4.1.4	Indagine sulla qualità biologica delle acque (I.B.E.)	. 13
	4.1.5	Valutazione della qualità delle acque mediante comunità diatomiche - indice ICMi	. 14
4.	2 M	ETODI DI ANALISI E DI VALUTAZIONE DEI DATI DI MONITORAGGIO	. 14
4.	3 S	FRUMENTAZIONE	. 15
	4.3.1	Analisi chimico-fisiche	. 16
	4.3.2	Misure di portata e velocità media della corrente	. 16
	4.3.3	Indagine sulla qualità biologica delle acque (STAR_ICMi)	. 16
	4.3.4	Valutazione della qualità delle acque mediante comunità diatomiche - indice ICMi	. 16
	4.3.5	Metodica fotografica – stato habitat naturale	red.
	4.3.6	Riassunto strumentazione usata per il monitoraggio delle acque superficiali	. 17
5	RISUL	TATI – FASE A.O 2018	. 18
5.	1 F	OSSO GIORDANO	. 18
	5.1.1	Monitoraggio parametri biologici	. 19
	5.1.2	Monitoraggio parametri chimico-fisici e microbiologici	. 20
	5.1.3	Monitoraggio della funzionalità fluviale I.F.F.	. 23
	5.1.4	Confronto dei risultati tra le stazioni di monte e valle	. 26
5.	2 R	IO PAOLMANO	. 29
	5.2.1	Monitoraggio parametri biologici	. 30
	5.2.2	Monitoraggio parametri chimico-fisici e microbiologici	. 31

Doc. N.		INOR	11	EE2PEMB10B5001	A A	3 di 12
5.2.3	Monitoraggio della funzionalità fluviale I.F.F					34
5.2.4	Confronto dei risultati tra le stazioni di monte e va	lle				35
5.3 R	IO MANO DI FERRO					36
5.3.1	Monitoraggio parametri biologici					37
5.3.2	Monitoraggio parametri chimico-fisici e microbiol	ogici			•••••	38
5.3.3	Monitoraggio della funzionalità fluviale I.F.F				•••••	41
5.3.4	Confronto dei risultati tra le stazioni di monte e va	lle				44
5.4 R	IO BISAOLA					46
5.4.1	Monitoraggio parametri biologici				•••••	47
5.4.2	Monitoraggio parametri chimico-fisici e microbiol	ogici				48
5.4.3	Monitoraggio della funzionalità fluviale I.F.F					51
5.4.4	Confronto dei risultati tra le stazioni di monte e va	lle				56
5.5 R	IO TIONELLO					59
5.5.1	Monitoraggio parametri biologici				•••••	60
5.5.2	Monitoraggio parametri chimico-fisici e microbiol	ogici				61
5.5.3	Monitoraggio della funzionalità fluviale I.F.F					64
5.5.4	Confronto dei risultati tra le stazioni di monte e va	lle				68
5.6 F	IUME TIONE DEI MONTI					71
5.6.1	Monitoraggio parametri biologici		•••••			72
5.6.2	Monitoraggio parametri chimico-fisici e microbiol	ogici				73
5.6.3	Monitoraggio della funzionalità fluviale I.F.F		•••••			76
5.6.4	Confronto dei risultati tra le stazioni di monte e va	lle				80
5.7 C	ANALE CONSORTILE SONA					82
5.7.1	Monitoraggio parametri chimico-fisici e microbiol	ogici				83
5.7.2	Confronto dei risultati tra le stazioni di monte e va	lle				86
5.8 S	COLO BULGARELLA					87
5.8.1	Monitoraggio parametri biologici					88
5.8.2	Monitoraggio parametri chimico-fisici e microbiol	ogici	•••••		•••••	89

Do	oc. N.		INOR	11	EE2PEMB10B5001	A A	4 di 121
	5.8.3	Monitoraggio della funzionalità fluviale I.F.F					93
	5.8.4	Confronto dei risultati tra le stazioni di monte e va	lle				95
	5.9	SCOLO BULGARELLA L.6.O.2					97
	5.9.1	Monitoraggio parametri biologici					98
	5.9.2	Monitoraggio parametri chimico-fisici e microbiol	ogici				99
	5.9.3	Monitoraggio della funzionalità fluviale I.F.F					102
	5.9.4	Confronto dei risultati tra le stazioni di monte e va	lle				104
	5.10	CANALE DIRAMATORE SOMMACAMPAGNA					106
	5.10.1	Monitoraggio parametri chimico-fisici e microbiol	ogici				107
	5.10.2	? Confronto dei risultati tra le stazioni di monte e va	lle	•••••			110
6	CON	CLUSIONI					111
	6.1	MONITORAGGIO PARAMETRI BIOLOGICI					111
	6.1.1	Indice sulla qualità biologica delle acque (I.B.E.) .					111
	6.1.2	Valutazione della qualità delle acque mediante con	nunità diatom	iche - indi	ce ICMi		112
	6.1.3	Indice di funzionalità fluviale (IFF)					112
	6.2	MONITORAGGIO PARAMETRI CHIMICO-FISICI					113
7	ALLE	EGATI – CERTIFICATI DI ANALISI					116
	7.1	ALL. I – CERTIFICATI DI ANALISI STAR_ICMI					116
	7.2	ALL. II – CERTIFICATI DI ANALISI ICMI					117
	7.3	ALL. III – RAPPORTI DI PROVA ANALISI CHIMICHE				•••••	118
	7.4	ALL. IV – Andamenti parametri chimico – fisici					119
	7.5	ALL. VI – CERTIFICATI DI MISURA DELLE PORTATE					120
	7.6	ALL. X – CERTIFICATI IFF					121

1 Premessa

La presente relazione riporta la sintesi dei risultati del monitoraggio effettuati in territorio del Veneto nel corso della Fase di *Ante Operam* per la componente Acque superficiali, lungo la costruenda Linea ferroviaria AV/AC Torino-Venezia, tratta Milano-Verona, lotto funzionale Brescia-Verona.

Nello specifico, il monitoraggio ambientale relativo alla componente acque superficiali, ha come scopo quello di valutare, nell'ambito temporale individuato dalle attività di cantierizzazione e costruzione, l'evoluzione dello stato quali-quantitativo delle risorse idriche superficiali interferite, al fine di definire, controllare e mitigare eventuali impatti negativi sull'assetto idrologico della fascia territoriale interessata e sulle caratteristiche qualitative delle acque.

In particolare, l'obiettivo del monitoraggio in fase AO è quello di caratterizzare l'ambiente idrico superficiale (corsi d'acqua, bacini, canali, fontanili e laghi) interessato in via diretta o indiretta dalla realizzazione delle opere sia dal punto di vista dello stato qualitativo sia dal punto di vista dello stato del regime idrologico al fine di:

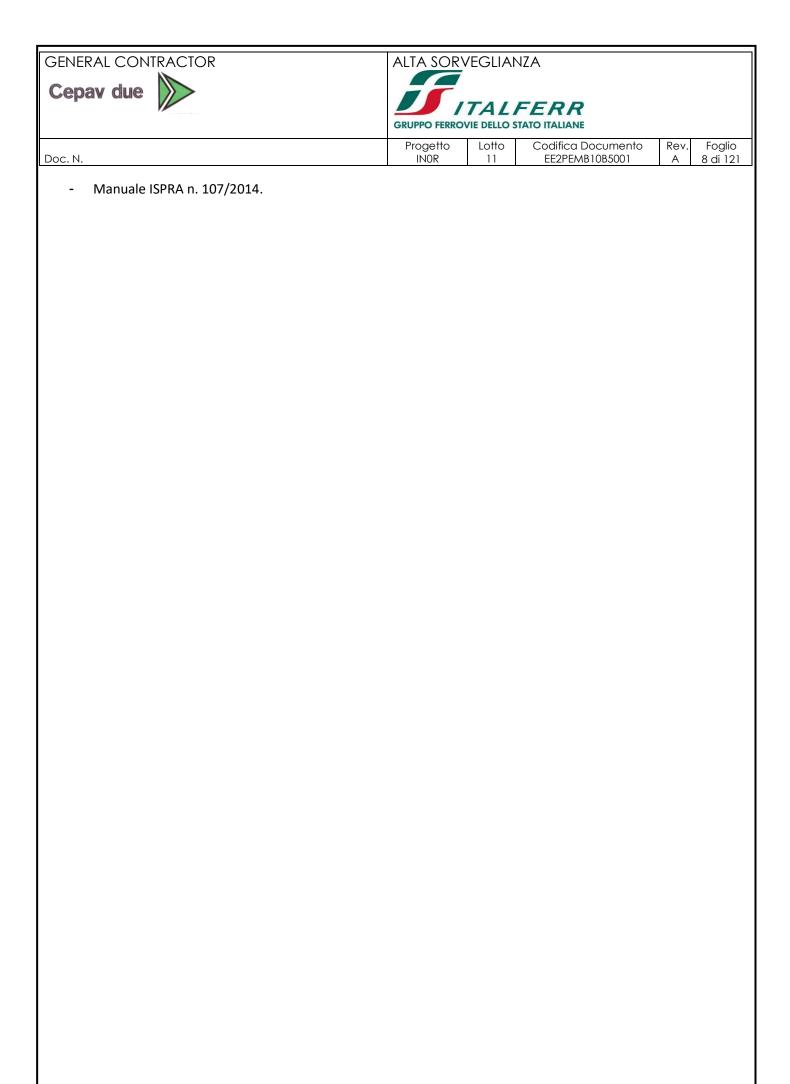
- avere una descrizione dettagliata dello status attuale riguardante la componente acque superficiali;
- verificare l'assenza di ulteriori sorgenti inquinanti o immissioni (ad es. scarichi nel corpo idrico o apporti derivanti da attività agricole) tra le stazioni di monte e di valle, che potrebbero portare ad una errata interpretazione dei dati rilevati nelle fasi operative successive;
- individuare eventuali attività di cantierizzazione che provochino alterazioni della qualità delle acque o del regime idrico e quindi predisporre i necessari interventi correttivi.

Per raggiungere questi obiettivi è necessario un costante monitoraggio dei parametri idraulici, chimico-fisici e biologici delle acque superficiali, con stazioni di controllo subito a monte e subito a valle dei punti di interferenza con la linea AC/AV o dei punti previsti di scarico delle acque reflue dei cantieri.

GENERAL CONTRACTOR Cepav due	ALTA SORVEGLIANZA TALFERR					
	Progetto	Lotto	Codifica Documento	Rev.	Foglio	
Doc. N.	INOR	11	EE2PEMB10B5001	Α	6 di 121	

2 Riferimenti Normativi

Al fine di avere il quadro generale sulla normativa di settore vengono qui sotto riportate tutte le normative Comunitarie, Nazionali e Regionali ad oggi disponibili in tema di acque superficiali.


ESTREMI NOR		ad oggi disponibili in tema di acque superficiali. TITOLO
25 INCIVIT NOR		Normativa Internazionale
		Parlamento Europeo e Consiglio del 16/12/2008 relativa a standard di qualità ambientale nel
Directtive 2000	/105/65	settore della politica delle acque, recante e successiva abrogazione delle direttive del Consiglio
Direttiva 2008	/105/CE	82/176/CEE, 83/513/CEE, 84/156/CEE, 84/491/CEE e 86/280/CEE, nonché modifica della direttiva
		2000/60/CE del Parlamento europee e del Consiglio e s.m.i.
		Parlamento Europeo e Consiglio del 20/11/2001 relativa all'istituzione di un elenco di sostanze
2001/245	5/CE	prioritarie in materia di acque e che modifica la direttiva 2000/60/CE. (GUCE L 15/12/2001, n.
		331).
Direttiva 2000	1/60/CE	Regolamento che istituisce un quadro per l'azione comunitaria in materia di acque. (Direttiva
Directiva 2000	0/00/CL	modificata dalla decisione 2001/2455/CE) e s.m.i.
Decisione della Co	ommissione	Acque – Classificazione dei sistemi di monitoraggio – Abrogazione decisione 2008/945/CE:
2013/480		decisione che istituisce i valori di classificazione dei sistemi di monitoraggio degli Stati membri
2013/ 100	, 52	risultanti dall'esercizio di intercalibrazione e s.m.i.
Direttiva 2013	3/39/UF	Modifica le direttive 2000/60/CE e 2008/105/CE per quanto riguarda le sostanze prioritarie nel
Directiva 2010	5, 55, 52	settore della politica delle acque.
		Normativa Nazionale
D.Lgs 13 ottobre 2	2015, n. 172	Attuazione della direttiva 2013/39/UE, che modifica le direttive 2000/60/CE per quanto riguarda
0		le sostanze prioritarie nel settore della politica delle acque.
		Attuazione della direttiva 2010/75/UE, relativa alle emissioni industriali (prevenzione e riduzione
D.Lgs. 4 marzo 2	014, n. 46.	integrate dell'inquinamento). (Pubblicato nel Supplemento Ordinario n. 27 alla Gazz. Uff. 27
		marzo 2014, n. 72) e s.m.i.
		Attuazione della direttiva 2008/105/CE relativa a standard di qualità ambientale nel settore della
	D.Lgs. n. 219 del 10 dicembre 2010	politica delle acque, recante modifica e successiva abrogazione delle direttive 82/176/CEE,
D.Lgs. n. 219 del 10 (83/513/CEE, 84/156/CEE, 84/491/CEE, 86/280/CEE, nonché' modifica della direttiva 2000/60/CE
		e recepimento della direttiva 2009/90/CE che stabilisce, conformemente alla direttiva
		2000/60/CE, specifiche tecniche per l'analisi chimica e il monitoraggio dello stato delle acque.
D.M. n. 260 del 08 n	ovembre 2010	Criteri tecnici per la classificazione dello stato dei corpi idrici superficiali - Modifica norme
		tecniche Digs 152/2006.
		Regolamento recante i criteri tecnici per la caratterizzazione dei corpi idrici (tipizzazione, individuazione dei corpi idrici, analisi delle pressioni) per la modifica delle norme tecniche del
D.M. n.131 del 1	6/06/2008	decreto legislativo 3 aprile 2006, n. 152, recante: "Norme in materia ambientale", predisposto ai
		sensi dell'articolo 75, comma 4, dello stesso decreto.
		Attuazione della direttiva 2006/7/CE relativa alla gestione della qualità delle acque di
D.Lgs. 30 maggio 2	2008, n. 116	balneazione e abrogazione della direttiva 76/160/CEE e s.m.i.
		Ulteriori disposizioni correttive ed integrative del decreto legislativo 3 aprile 2006, n. 152,
D.lgs n.4 del 16,	/01/2008:	recante norme in materia ambientale e s.m.i.
		Disposizioni correttive ed integrative del decreto legislativo 3 aprile 2006, n. 152, recante norme
D. lgs. 8 novembre	2006, n. 284	in materia ambientale.
		"Norme in materia ambientale" così come modificato dal D.lgs. 4 del 16/01/2008 "Ulteriori
D.lgs n. 152 del 3	3/04/2006	disposizioni correttive ed integrative del decreto legislativo 3 aprile 2006, n. 152, recante norme
5.1g5 111 132 del 1	3,01,2000	in materia ambientale" e s.m.i.
		Disposizioni sulla tutela delle acque dall'inquinamento e recepimento della direttiva 91/271/CEE
		concernente il trattamento delle acque reflue urbane e della direttiva 91/676/CEE relativa alla
		protezione delle acque dall'inquinamento provocato dai nitrati provenienti da fonti agricole", a
D.lgs n. 15	2/99	seguito delle disposizioni correttive ed integrative di cui al decreto legislativo 18 agosto 2000, n.
		258"pubblicato nella Gazzetta Ufficiale n. 246 del 20 ottobre 2000 - Supplemento Ordinario n.
		172. Abrogato da Dlgs 3 aprile 2006, n. 152 (29/04/2006) Norme in materia ambientale.
		Ministero dell'Ambiente e della Tutela del territorio e del Mare. Regolamento recante «Criteri
		tecnici per il monitoraggio dei corpi idrici e l'identificazione delle condizioni di riferimento per la
Decreto 56 del	14/04/09	modifica delle norme tecniche del decreto legislativo 3 aprile 2006, n. 152, recante Norme in
		materia ambientale, predisposto ai sensi dell'articolo 75, comma 3, del decreto legislativo
		medesimo». GU n. 124 del 30-5-2009 - Suppl. Ordinario n.83).
		

ESTREMI NORMATIVA	TITOLO
ESTREIVITIORIVIATIVA	Criteri tecnici per il momitoraggio dei corpi idrici e l'identificazione delle condizioni di riferimento
D.M. 56/09	per la modifica delle norme tecniche del decreto legislativo 3 aprile 2006, n. 152, recante Norme
D.IVI. 30/03	in materia ambientale, predisposto ai sensi dell'articolo 75, comma 3, del D. Lgs medesimo.
	Conversione in legge, con modificazioni, del DI 30 dicembre 2008, n. 208, recante misure
L.13/09	straordinarie in materia di risorse idriche e di protezione dell'ambiente.
D.Lgs. 208/08	Misure straordinarie in materia di risorse idriche e di protezione dell'ambiente e s.m.i.
D.Lgs. 200/00	Disciplina sanzionatoria dello scarico di acque reflue - Modifica alla Parte terza del Digs
L. 36/10	152/2006.
D.M. 185/03	Regolamento recante norme tecniche per il riutilizzo delle acque reflue.
D.lgs n. 31/01	Attuazione della direttiva 98/83/CE relativa alla qualità delle acque destinate al consumo umano
D.ig3 II. 31/01	pubblicato nella Gazzetta Ufficiale n. 52 del 3 marzo 2001 - Supplemento Ordinario n. 41 e s.m.i.
	Disposizioni correttive ed integrative del decreto legislativo 11 maggio 1999, n. 152, in materia di
	tutela delle acque dall'inquinamento, a norma dell'articolo 1, comma 4, della legge 24 aprile
D.Lgs. n. 258/00	1998, n. 128 pubblicato nella Gazzetta Ufficiale n. 218 del 18 settembre 2000 – Supplemento
	ordinario n. 153. Abrogata da UNI EN ISO 5667-3:2018 Qualità dell'acqua – Campionamento –
	Parte 3: Conservazione e trattamento dei campioni d'acqua.
UNI EN ISO 5667-3 Del 2004	Qualità dell'acqua – Campionamento – Parte 3: Guida per la conservazione e il maneggiamento
0141 214 130 3007 3 201 200 1	di campioni d'acqua.
	Normativa Regionale - Lombardia
	Modifiche alla legge regionale 12 dicembre 2003, n. 26 "Disciplina dei servizi di interesse
L.R. del 12/07/2007, n. 12	economico generale – Norme in materia di gestione dei rifiuti, di energia, di utilizzo del
	sottosuolo e di risorse idriche" ed altre disposizioni in materia di gestione dei rifiuti.
D.G.R. 13dicembre 2006, n. 8/3789	Programma di tutela e uso delle acque – Indicazioni alle Autorità d'ambito per la definizione degli
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	interventi prioritari del ciclo dell'acqua.
	Conferimento di funzioni agli enti locali in materia di interesse economico generale. Modifiche
L.R. del 8/08/2006, n. 18	alla legge regionale 12 dicembre 2003, n. 26 "Disciplina dei servizi locali di interesse economico
	generale – Norme in materia di gestione dei rifiuti, di energia, di utilizzo del sottosuolo e di
D. III	risorse idriche".
Deliberazione n. 1 del 24 febbraio 2010	Adozione del piano di gestione del distretto idrografico del bacino del fiume Po.
Deliberazione n. 1 del 24 febbraio 2010 L.R. 12/12/2003, n. 26	Adozione del piano di gestione del distretto idrografico del bacino del fiume Po. Disciplina dei servizi locali di interesse economico generale – Norme in materia di gestione dei
	Adozione del piano di gestione del distretto idrografico del bacino del fiume Po. Disciplina dei servizi locali di interesse economico generale – Norme in materia di gestione dei rifiuti, di energia, di utilizzo del sottosuolo e di risorse idriche (modificata dalla L.R. 18/2006).
	Adozione del piano di gestione del distretto idrografico del bacino del fiume Po. Disciplina dei servizi locali di interesse economico generale – Norme in materia di gestione dei rifiuti, di energia, di utilizzo del sottosuolo e di risorse idriche (modificata dalla L.R. 18/2006). Normativa Regionale - Veneto
	Adozione del piano di gestione del distretto idrografico del bacino del fiume Po. Disciplina dei servizi locali di interesse economico generale – Norme in materia di gestione dei rifiuti, di energia, di utilizzo del sottosuolo e di risorse idriche (modificata dalla L.R. 18/2006). Normativa Regionale - Veneto Classificazione delle acque superficiali interne regionali: corsi d'acqua e laghi, triennio 2010 0
L.R. 12/12/2003, n. 26	Adozione del piano di gestione del distretto idrografico del bacino del fiume Po. Disciplina dei servizi locali di interesse economico generale – Norme in materia di gestione dei rifiuti, di energia, di utilizzo del sottosuolo e di risorse idriche (modificata dalla L.R. 18/2006). Normativa Regionale - Veneto Classificazione delle acque superficiali interne regionali: corsi d'acqua e laghi, triennio 2010 0 2012. DIRETTIVA 2000/60/ce, d. Lgs. 152/2006, D.M. 260/2010. Presa d'atto e avvio della
L.R. 12/12/2003, n. 26 Deliberazione della Giunta Regionale n. 1950 del 28 ottobre 2013	Adozione del piano di gestione del distretto idrografico del bacino del fiume Po. Disciplina dei servizi locali di interesse economico generale – Norme in materia di gestione dei rifiuti, di energia, di utilizzo del sottosuolo e di risorse idriche (modificata dalla L.R. 18/2006). Normativa Regionale - Veneto Classificazione delle acque superficiali interne regionali: corsi d'acqua e laghi, triennio 2010 0 2012. DIRETTIVA 2000/60/ce, d. Lgs. 152/2006, D.M. 260/2010. Presa d'atto e avvio della consultazione pubblica.
L.R. 12/12/2003, n. 26 Deliberazione della Giunta Regionale n.	Adozione del piano di gestione del distretto idrografico del bacino del fiume Po. Disciplina dei servizi locali di interesse economico generale – Norme in materia di gestione dei rifiuti, di energia, di utilizzo del sottosuolo e di risorse idriche (modificata dalla L.R. 18/2006). Normativa Regionale - Veneto Classificazione delle acque superficiali interne regionali: corsi d'acqua e laghi, triennio 2010 0 2012. DIRETTIVA 2000/60/ce, d. Lgs. 152/2006, D.M. 260/2010. Presa d'atto e avvio della

Ulteriori riferimenti metodologici sono contenuti nei seguenti quaderni tecnici e manuali:

- EPA 2006 Qualitative Habitat Evaluation Index;
- APAT 2007. Indice di Funzionalità Fluviale;
- IRSA-CNR 2008. Notiziario dei Metodi Analitici. Direttiva 2000/60/CE Condizioni di riferimento per fiumi e laghi. Classificazione dei Fiumi sulla base dei macroinvertebrati acquatici;
- ISPRA 2009. Implementazione della Direttiva 2000/60/CE Proposta metodologica per l'analisi e la valutazione degli aspetti idromorfologici 1. Regime idrologico;
- Manual on Stream gauging VOL I e II del WMO, 2010.
- APAT, IRSA-CNR Metodi analitici per le acque. Manuali e linee guida 29/2003;
- Manuale ISPRA n. 131/2016 IDRAIM Sistema di valutazione idromorfologica, analisi e monitoraggio corsi d'acqua;
- Manuale IRSA-CNR 1/i-2013 "Guida al rilevamento degli habitat fluviali Manuale del metodo Cravaggio;
- Manuale ISPRA 111/2014 "Metodi biologici per le acque superficiali interne";

3 Stazioni e componenti oggetto d'indagine

Nella seguente tabella sono elencate le stazioni oggetto di indagine.

Per ognuna di esse è riportato il relativo codice di identificazione, il corso d'acqua di appartenenza,le componenti d'indagine, le coordinate di localizzazione, il comune e la provincia di appartenenza.

Tabella 3.1 - Elenco stazioni oggetto di indagine con relativa posizione in Gauss Boaga Ovest, provincia e comune di appartenenza

Codice Stazione	Corso d'acqua	Chimicofisiche e microbiologiche	Portata	IBE	ICMi	世	Coordinate X_GBO	Coordinate Y_GBO	Comune	Provincia
AV-PE-SU-19	Fosso Giordano	Х	Х	Х	Х	Х	1630208.6	5032216.9	Peschiera del Garda	Verona
AV-PE-SU-20	Fosso Giordano	Х	Х	Х	Х	Х	1630244.3	5031908.9	Peschiera del Garda	Verona
AV-PE-SU-23	Rio Paolmano	Х	Х	Х	Х	Х	1630988.6	5032318.3	Peschiera del Garda	Verona
AV-PE-SU-25	Rio Mano di Ferro	Х	Х	Х	Х	Х	1632043.7	5032016.3	Peschiera del Garda	Verona
AV-PE-SU-26	Rio Mano di Ferro	х	Χ	Х	Х	Х	1632618.0	5031860.1	Peschiera del Garda	Verona
AV-CN-SU-29	Rio Bisaola	х	Х	Х	Х	Х	1636619.1	5032054.5	Castelnuovo del Garda	Verona
AV-CN-SU-30	Rio Bisaola	х	Х	Х	Х	Х	1635456.1	5031405.7	Castelnuovo del Garda	Verona
AV-CN-SU-31	Rio Tionello	х	Х	Х	Х	Х	1638072.8	5032257.3	Castelnuovo del Garda	Verona
AV-CN-SU-32	Rio Tionello	х	Х	Х	Х	Х	1637682.4	5031268.6	Castelnuovo del Garda	Verona
AV-SO-SU-33	Fiume Tione dei monti	Х	Χ	Χ	Х	Х	1638827.7	5031989.4	Sona	Verona
AV-SO-SU-34	Fiume Tione dei monti	Χ	Χ	Х	Χ	Х	1638589.3	5031436.9	Sona	Verona
AV-SO-SU-35	Canale Consortile Sona	Х	Χ				1640549.5	5031471.7	Sona	Verona
AV-SO-SU-36	Canale Consortile Sona	Х	Χ				1640411.3	5031039.8	Sona	Verona
AV-SO-SU-37	Scolo Bulgarella	Х	Χ	Χ	Χ	Х	1640817.0	5031489.7	Sona	Verona
AV-SO-SU-38	Scolo Bulgarella	Х	Χ	Х	Χ	Х	1640870.0	5031088.7	Sona	Verona
AV-SO-SU-39	Scolo Bulgarella L.6.O.2	Х	Χ	Х	Χ	Χ	1640936.6	5030448.5	Sona	Verona
AV-SO-SU-40	Scolo Bulgarella L.6.O.2	Х	Χ	Х	Χ	Χ	1640929.1	5030388.1	Sona	Verona
AV-SO-SU-41	Canale diramatore Sommacampagna	Х	Х				1648371.6	5032229.6	Sona	Verona
AV-SM-SU-42	Canale diramatore Sommacampagna	Х	Х				1647328.5	5031918.9	Sommacampagna	Verona

4 Metodi d'esecuzione dei rilievi in campo e di analisi

4.1 Metodiche di rilievo

I controlli mirati all'accertamento dello stato quali-quantitativo delle risorse idriche superficiali sono stati eseguiti mediante la Metodica SU-1 "Indagini per campagne periodiche dei parametri chimico-fisici".

La Metodica SU-1 prevede una caratterizzazione circa lo stato di qualità dei corsi d'acqua interessati dall'attraversamento del corridoio infrastrutturale in esercizio tramite misure *in situ* ed il prelievo di campioni da inviare al laboratorio per la successiva determinazione chimico-fisica e microbiologica.

4.1.1 Misure in situ

Oltre alla compilazione della scheda di campo, che riporta le caratteristiche del sito ed eventuali note, sono state effettuate anche misure di portata (dove possibile) ed analisi chimico-fisiche.

Nella seguente tabella vengono riportati i parametri monitorati in situ.

GRUPPO	PARAMETRI	UNITÀ DI MISURA
Parametri Fisici	Portata	m³/s
Parametri Fisici	Temperatura	°C
	рН	Unità pH
	Conducibilità elettrica specifica (25 °C)	μS/cm
Parametri Chimici	Potenziale redox	mV
	Ossigeno disciolto	%
	Ossigeno disciolto	mg/L
	IFF	Classi
Parametri Biologici	IBE	Classi
	ICMi	Classi

Tabella 4.1 – Parametri monitorati *in situ* e parametri biologici.

Data la dimensione dei corsi d'acqua monitorati (di medie e piccole dimensioni), le misure di portata sono effettuate utilizzando il metodo correntometrico. I risultati sono riportati nell'Allegato 1.

I parametri della Temperatura, Ossigeno disciolto (% saturazione), Ossigeno disciolto (mg/l), pH, Conducibilità e Potenziale RedOx, vengono misurati in campo con strumentazione portatile (sonda multiparametrica) secondo i requisiti della normativa vigente di settore.

In Allegato 2 viene presentata una tabella riassuntiva con le descrizioni ambientali, riguardanti la componente biologica, delle singole stazioni di monitoraggio.

4.1.2 Analisi di laboratorio

Sui campioni di acqua prelevati e consegnati al laboratorio di analisi, sono state effettuate le determinazioni analitiche riportate nella seguente tabella.

Progetto Lotto Codifica Documento Rev. Foglio Doc. N. INOR 11 EE2PEMB10B5001 A 11 di 121

GRUPPO	PARAMETRI	UNITÀ DI MISURA	METODICA ANALITICA
Parametri Chimico-fisici	Solidi Sospesi Totali (SST)	mg/l	APAT CNR IRSA 2090 B Man. 29 2003
	Alluminio (Al) e Alluminio (Al) sul totale	μg/l	EPA 200.8 1994
	Arsenico (As)	μg/l	EPA 200.8 1994
	Cadmio (Cd)	μg/l	EPA 200.8 1994
	Calcio (Ca)	mg/l	EPA 200.8 1994
	Cromo esavalente (Cr)	μg/l	EPA 218.7 2011
	Cromo totale (Cr)	μg/l	EPA 200.8 1994
	Ferro (Fe) e Ferro (Fe) sul totale	μg/l	EPA 200.8 1994
	Magnesio (Mg)	mg/l	EPA 200.8 1994
Metalli e specie metalliche	Manganese (Mn)	μg/l	EPA 200.8 1994
	Mercurio (Hg)	μg/l	EPA 200.8 1994
	Nichel (Ni)	μg/l	EPA 200.8 1994
	Piombo (Pb)	μg/l	EPA 200.8 1994
	Potassio (K)	mg/l	EPA 200.8 1994
	Rame (Cu)	μg/l	EPA 200.8 1994
	Silicio (Si)	mg/l	EPA 200.8 1994
	Sodio (Na)	mg/l	EPA 200.8 1994
	Zinco (Zn)	μg/l	EPA 200.8 1994
	Durezza totale	°F	APAT CNR IRSA 2040 B Man 29 2003
	Fosforo totale (come P)	mg/l	M.U. 2252:08
	Ortofosfato (PO ₄)	mg/l	M.U. 2252:08
	Azoto Ammoniacale (N)	mg/l	EPA 200.8 1994
Costituenti inorganici non	Azoto nitrico (N)	mg/l	EPA 300.0 1993
metallici	Azoto nitroso (N)	 μg/l	EPA 353.2 1993
	Azoto totale (N)	mg/l	M.U. 2441:12
	Cloruri (Cl)	mg/l	EPA 300.0 1993
	Solfati (SO ₄)	mg/l	EPA 300.0 1993
	Richiesta chimica di ossigeno - COD (O ₂)	mg/l	ISO 15705:2002
	Richiesta biochimica di ossigeno - BOD_5 (O_2)	mg/l	APHA Standard Methods for the Examination of Water and Wastewater, ed. 22nd 2012, 5210B
	Carbonio organico totale (TOC)	mg/l	UNI EN 1484:1999
	Carbonio organico disciolto (DOC)	mg/l	UNI EN 1484:1999
	Idrocarburi leggeri C≤12	μg/l	ISPRA Man 123 2015 Met A
	Idrocarburi pesanti C>12	μg/l	UNI EN ISO 9377-2:2002
Costituenti organici	Idrocarburi totali (espressi come n- esano)	μg/l	Somma
	Tensioattivi non ionici	mg/l	UNI 10511-1:1996 + A1:2000
	Tensioattivi anionici	mg/l	APAT CNR IRSA 5170 Man. 29 2003
	Benzene	μg/l	EPA 5030C 2003 + EPA 8260C 2006
	Toluene	μg/l	EPA 5030C 2003 + EPA 8260C 2006
	orto-Xilene	μg/l	EPA 5030C 2003 + EPA 8260C 2006
	meta-Xilene	μg/l	EPA 5030C 2003 + EPA 8260C 2006
	para-Xilene	μg/l	EPA 5030C 2003 + EPA 8260C 2006
	Carbonio tetracloruro	μg/l	EPA 5030C 2003 + EPA 8260C 2006

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 EE2PEMB10B5001 A 12 di 121

GRUPPO	PARAMETRI	UNITÀ DI MISURA	METODICA ANALITICA
	2-clorotoluene	μg/l	EPA 5030C 2003 + EPA 8260C 2006
	3-clorotoluene	μg/l	EPA 5030C 2003 + EPA 8260C 2006
	4-clorotoluene	μg/l	EPA 5030C 2003 + EPA 8260C 2006
	1,2-dicloroetano	μg/l	EPA 5030C 2003 + EPA 8260C 2006
	Diclorometano	μg/l	EPA 5030C 2003 + EPA 8260C 2006
	Esaclorobutadiene	μg/l	EPA 5030C 2003 + EPA 8260C 2006
	Tetracloroetilene	μg/l	EPA 5030C 2003 + EPA 8260C 2006
	1,1,1-tricloroetano	μg/l	EPA 5030C 2003 + EPA 8260C 2006
	Tricloroetilene	μg/l	EPA 5030C 2003 + EPA 8260C 2006
	Triclorometano	μg/l	EPA 5030C 2003 + EPA 8260C 2006
	Monoclorobenzene	μg/l	EPA 5030C 2003 + EPA 8260C 2006
	1,2-diclorobenzene	μg/l	EPA 5030C 2003 + EPA 8260C 2006
	1,3-diclorobenzene	μg/l	EPA 5030C 2003 + EPA 8260C 2006
	1,4-diclorobenzene	μg/l	EPA 5030C 2003 + EPA 8260C 2006
	1,2,3-triclorobenzene	μg/l	EPA 5030C 2003 + EPA 8260C 2006
	1,2,4-triclorobenzene	μg/l	EPA 5030C 2003 + EPA 8260C 2006
	1,3,5-triclorobenzene	μg/l	EPA 5030C 2003 + EPA 8260C 2006
	Esaclorobenzene	μg/l	EPA 5030C 2003 + EPA 8260C 2006
Parametri Microbiologici	Escherichia coli	UFC/100 ml	APAT CNR IRSA 7030 F Man. 29 2003

Tabella 4.2 - Determinazioni analitiche effettuate sui campioni prelevati

In Allegato 3 vengono riportati i referti delle analisi di laboratorio effettuate nel semestre di riferimento mentre in Allegato 4 sono riportati gli andamenti dei parametri misurati in laboratorio ed *in situ* nell'ultimo anno idrologico.

4.1.3 Misure di portata e velocità media della corrente

La determinazione della portata defluente viene eseguita mediante misurazione diretta della batimetria dell'alveo e rilievo della velocità della corrente in una serie di punti opportunamente distribuiti lungo la sezione di misura, posizionata ortogonalmente rispetto al flusso della corrente.

La successione delle singole misure è realizzata lungo una serie di verticali distribuite all'interno della sezione di misura in modo da rappresentare, nel modo più preciso, le geometrie dell'alveo e le variazioni dei flussi della corrente idrica.

I rilievi correntometrici vengono condotti con l'utilizzo di mulinelli di precisione SIAP Me 4001 e Flow Probe.

Le misure sono effettuate a guado dove il campionamento risulta possibile in condizioni di sicurezza oppure in sospensione dal ponte più vicino alla stazione di campionamento, nel caso in cui la portata del corpo idrico non ne permetta la misura a guado.

Su ogni verticale viene calcolate la velocità media come la media di tutte le velocità rilevate nei punti posizionati sulla verticale stessa.

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. 11 EE2PEMB10B5001 A 13 di 121

Suddivisa la sezione in aree trapezoidali e triangolari (Ai):

$$A_{i} = \frac{(y_{i} + y_{i+1})\Delta l_{i}}{2} \qquad con \qquad \Delta l_{i} = (x_{i+1} - x_{i})$$

la portata (Q_i) che compete a ciascuna subarea in cui è stata suddivisa la sezione è dunque calcolata come:

$$Q_i = \frac{v_i + v_{i+1}}{2} \cdot \frac{y_i + y_{i+1}}{2} \cdot \Delta l_i$$

La portata totale (Qtot) che attraversa la sezione è data quindi dalla somma delle portate calcolate in ciascuna area:

$$Q_{tot} = \sum_{i=1}^{n^{\circ}punti} Q_i = \sum_{i=1}^{n^{\circ}punti} \frac{v_i + v_{i+1}}{2} \cdot \frac{y_i + y_{i+1}}{2} \cdot \Delta l_i$$

L'area media (A) della sezione è data dalla somma delle singole subaree che la costituiscono. La velocità media (v) della sezione viene ottenuta come:

$$v = \frac{\sum_{i=1}^{n^{\circ} punti} A_i v_i}{A}$$

4.1.4 Indagine sulla qualità biologica delle acque (I.B.E.)

Il protocollo d'indagine I.B.E. prevede l'analisi della comunità dei macroinvertebrati bentonici, organismi costantemente presenti nel corso d'acqua la cui taglia alla fine dello stadio larvale supera in genere la dimensione minima di 1 mm; ad essi appartengono i seguenti gruppi zoologici: Insetti (in particolare taxa appartenenti agli ordini dei Plecotteri, Efemerotteri, Coleotteri, Odonati, Eterotteri e Ditteri), Crostacei (Anfipodi, Isopodi e Decapodi), Molluschi (Gasteropodi e Bivalvi), Irudinei, Tricladi, Oligocheti ed altri gruppi più rari come Nematomorfi.

Una volta ultimate le determinazioni tassonomiche e definita con precisione la struttura della comunità macrobentonica, si calcola l'indice I.B.E. mediante l'utilizzo della tabella di calcolo dotata di due entrate di cui una orizzontale, stabilita in base alla qualità degli organismi rinvenuti, ed una verticale determinata dal numero totale di Unità Sistematiche presenti nel campione (tabella n. 2 del metodo APAT-IRSA/CNR 2003 Metodi analitici per le acque, vol. III – sez. 9000 – Indicatori Biologici).

Il valore dell'indice biotico calcolato è convertito nella corrispondente classe di qualità biologica sulla base dei valori di riferimento riportati nella tabella n. 4 del metodo APAT-IRSA/CNR 2003 Metodi analitici per le acque, vol. III – sez. 9000 – Indicatori Biologici.

L'abbondanza relativa dei macroinvertebrati presenti in modo significativo nella stazione è stata espressa sulla base di una discretizzazione in 3 classi di abbondanza semiquantitative dove: I = presente, L = comune, U = dominante, * = drift. I taxa segnalati come Drift (*) non vengono conteggiati per l'entrata verticale in quanto rinvenuti in numero non significativo per il loro computo all'interno della comunità macrobentonica. Il confronto tra i vari campioni è reso possibile mediante l'applicazione in tutte le situazioni del medesimo sforzo di cattura (campionamento di un singolo transetto per stazione di indagine).

4.1.5 Valutazione della qualità delle acque mediante comunità diatomiche - indice ICMi

Il "Protocollo di campionamento e analisi delle diatomee bentoniche dei corsi d'acqua", contenuto nel Manuale n. 111/2014 di ISPRA, descrive in dettaglio le procedure di campionamento e di preparazione del campione per la successiva osservazione in laboratorio.

Ai fini della valutazione dello stato dei corsi d'acqua mediante l'analisi della componente diatomica, l'Italia, non avendo proposto una metrica nazionale, ha recepito l'utilizzo della metrica utilizzata ai fini dei processi di intercalibrazione, la Intercalibration Common Metric Index ICMi (Mancini & Sollazzo 2009; DM 260/2010).

A seguito della tipizzazione dei corpi idrici, i tipi specificati possono essere riconducibili a delle categorie più grandi, definite macrotipi fluviali riportati prima da Buffagni *et al.* 2008 e successivamente nella tabella 4.1/a del DM 260/2010 (Tabella 1).

L'Indice Multimetrico di Intercalibrazione (ICMi) si basa sull'Indice di Sensibilità agli Inquinanti (IPS) e sull'Indice Trofico (TI) (D.M. 260/2010). La determinazione della metrica ICMi viene effettuata mediando i valori di RQE derivati dagli indici IPS e TI ed i risultati del calcolo vengono tradotti in una scala su cinque classi di qualità, rappresentative di uno stato da cattivo a elevato. Nella Tab. 4.1.1/d del D.M. 260/2010 vengono riportati i valori di riferimento degli indici IPS e TI da utilizzare per il calcolo dei rispettivi RQE.

Nella Tab. 4.1.1/c del D.M. 260/2010 sono riportati i valori di RQE relativi ai limiti di classe dell'ICMi, distinti nei macrotipi fluviali indicati nella Tab. 4.1/a (D.M. 260/2010).

La Decisione (UE) 2018/229 della Commissione del 12 febbraio 2018, che riporta i risultati del gruppo di intercalibrazione geografico per i fiumi centrali e baltici per i diversi macrotipi fluviali e per i diversi elementi di qualità biologica, ha apportato delle modifiche alle delimitazioni per gli stati Elevato e Buono (E/B) e Buono e Sufficiente (B/S), esclusivamente per il macrotipo C della tabella 4.1.1/c del DM 260/2010.

Il calcolo dell'indice ICMi è stato effettuato tramite inserimento dei valori di abbondanza relativa nel software OMNIDIA 6.0.4 (Lecointe et al. 1993).

4.2 Metodi di analisi e di valutazione dei dati di monitoraggio

I dati del monitoraggio sono analizzati e valutati secondo quanto definito dal documento fornito dall'ARPA Lombardia "Metodo di analisi e di valutazione dei dati di monitoraggio – componente ACQUE SUPERFICIALI". Questo documento ha l'obiettivo di fornire criteri per individuare eventuali situazioni anomale o di emergenza, attraverso la definizione di soglie di attenzione ed intervento, al fine di mettere in atto tempestivamente opportune azioni mitigative o risolutive.

Il metodo scelto per l'analisi dei dati si articola in tre momenti fondamentali:

- accettazione dei dati;
- normalizzazione del giudizio di qualità ambientale attraverso le curve Valore Indicizzato del Parametro (VIP);
- valutazione di soglie di attenzione e di intervento mediante il calcolo del Δ VIP tra la stazione di monte e quella di valle.

In particolare il Valore Indicizzato del Parametro (VIP) è compreso tra 0 e 10 ed è convenzionalmente associato ad ogni misura del parametro, secondo le curve funzione fissate. Al valore VIP = 0 viene attribuito il significato di "qualità ambientale pessima"; al valore VIP = 10 viene attribuito il significato di "qualità ambientale ottimale".

Dal punto di vista operativo, valutando la differenza dei valori misurati per lo stesso parametro tra la stazione di monte e quella di valle (Δ VIP), vengono definite soglie progressive (di attenzione e di intervento), al cui raggiungimento corrispondono azioni gradualmente più impegnative, in funzione dei potenziali effetti indotti.

La soglia di attenzione (1<ΔVIP≤2) è un valore fissato per ogni parametro, il cui superamento richiede l'avvio di ulteriori verifiche e valutazioni in merito alla misura rilevata (verifica delle modalità di analisi, valutazione del numero consecutivo di superamenti registrati, ecc.).

La soglia di intervento è un valore fissato per ogni parametro, il cui superamento richiede l'implementazione di azioni correttive tempestive e di un campionamento di verifica.

I parametri oggetto di monitoraggio, scelti in funzione dei potenziali impatti dovuti alle lavorazioni (es: scavi di gallerie o trincee, realizzazione di viadotti, attraversamenti e rilevati, scarichi, impiego di additivi e/o altre sostanze utilizzate nelle aree di cantiere, ecc.), che si ritengono più rappresentativi e, pertanto, da elaborare tramite l'applicazione del metodo VIP sono riportati nella seguente tabella:

TIPOLOGIA PARAMETRO	PARAMETRO	UNITÀ DI MISURA
	Conducibilità	μS/cm
Chimico-fisici in situ	Ossigeno percentuale	% di saturazione
	рН	-
	Solidi Sospesi Totali	mg/l
	Idrocarburi Totali	μg/l
	Solfati	mg/l
	Cloruri	mg/l
	Azoto Ammoniacale	mg/l
Chimina finini in labourtania	COD	mg/l
Chimico-fisici in laboratorio	тос	mg/l
	Cromo Totale	μg/l
	Alluminio	μg/l
	Tensioattivi non ionici	mg/l
	Tensioattivi anionici	mg/l
	Escherichia coli	UCF/100 ml
Dialaria;	STAR-ICMi	Classi
Biologici	ICMi	Classi

Tabella 4.3 - Parametri soggetti a calcolo VIP per la componente Acque Superficiali

Per la definizione delle soglie relative agli indici biologici, si ritiene di non dover procedere ad una normalizzazione, ma di utilizzare i valori delle classi di qualità ottenuti. Il peggioramento di una classe di qualità tra monte e valle indica il superamento della soglia di intervento. Contestualmente sarà considerata la differenza tra i valori dell'indice calcolato nel punto di monte e di valle al fine di interpretare in maniera esaustiva il risultato.

4.3 Strumentazione

In funzione della presenza d'acqua e della qualità della stessa, in accordo con quanto previsto dalla normativa vigente, è stata effettuata la misura di portata e misurati: temperatura dell'acqua, ossigeno disciolto in mg/l e %, conducibilità, pH e potenziale RedOx. Di seguito si riportano i principali strumenti necessari ad effettuare le diverse tipologie di misure ed analisi elencate nel paragrafo "Metodiche di rilievo".

4.3.1 Analisi chimico-fisiche

Per il monitoraggio dei parametri in situ (temperatura dell'acqua, pH, conducibilità, potenziale redox, ossigeno disciolto) vengono utilizzate sonde multiparametriche (Eurotech Instruments PCD650 oppure Hannah Instrument H198194) capace di analizzare simultaneamente diversi parametri chimico-fisici.

L'acquisizione dei dati è stata realizzata, dove permesso dalle condizioni del flusso di acqua, inserendo la sonda all'interno dei corsi d'acqua ed attendendo almeno 30 secondi e comunque fino alla stabilizzazione dei parametri misurati.

L'acqua prelevata è stata ripartita in differenti contenitori, in vetro o polietilene, di volumi differenti e conservata nel frigorifero Euroangel modello F0330, con temperatura regolabile e controllo digitale della temperatura, in modo da refrigerare adeguatamente i campioni prima della consegna in laboratorio.

Ogni campione è stato adeguatamente etichettato e per ogni campagna di prelievi è stato redatto un verbale di campionamento.

Per il campionamento sono state prelevate le seguenti aliquote:

- n° 2 bottiglie in vetro chiaro (1000 ml);
- n° 3 bottiglie in vetro scuro (1000 ml);
- n°3 fiale PE (50 ml), per l'analisi dei metalli disciolti, previa filtrazione acqua (filtro da 0,45 μm), e successiva stabilizzazione del campione con 1 ml di acido nitrico (concentrazione 65%);
- n°3 vials in vetro con tappo forato per l'analisi dei solventi;
- n°1 bottiglia PE sterile (500 ml) per l'analisi microbiologica.

4.3.2 Misure di portata e velocità media della corrente

I rilievi correntometrici sono stati eseguiti con l'utilizzo di mulinelli di precisione SIAP Me 4001 e FLOWPROBE.

4.3.3 Indagine sulla qualità biologica delle acque (STAR_ICMi)

Il campionamento del macrobenthos è stato eseguito utilizzando il retino Surber, indicato principalmente per tutti gli habitat non molto profondi, o il retino immanicato, preferibilmente nel caso degli habitat caratterizzati da profondità maggiori di 0,5 m.

Per il campionamento del macrobenthos nei corsi d'acqua non guadabili sono stati utilizzati dei substrati artificiali costituiti da 10 lamelle di faesite unite tra di loro da una barra filettata e fissate tramite un golfare ad un cavo di ancoraggio.

4.3.4 Valutazione della qualità delle acque mediante comunità diatomiche - indice ICMi

L'Indice ICMi è stato determinato mediante utilizzo dell'attrezzatura quanto riportato nel documento "Protocollo di campionamento e analisi delle diatomee bentoniche dei corsi d'acqua", contenuto nel Manuale n. 111/2014 di ISPRA.

4.3.5 Riassunto strumentazione usata per il monitoraggio delle acque superficiali

Nella tabella seguente si riassume la strumentazione utilizzata per i monitoraggi delle acque superficiali.

STRUMENTAZIONE	QUANTITÀ	MODELLO	MODALITÀ DI UTILIZZO	TARATURA E/O CALOBRAZIONE
Sonda Multiparametrica Eurotech Instruments	1	PCD650	Sonda multiparametrica per l'analisi dei parametri di campo	Controllo della calibrazione prima della campagna di misura
Sonda Multiparametrica Hanna Instrument	1 H198194		Sonda multiparametrica per l'analisi dei parametri di campo	Controllo della calibrazione prima della campagna di misura
Mulinello di precisione	2	SIAP Me 4001	Misuratore correntometrico in corsi d'acqua superficiali	Controllo apparecchiature prima della campagna di misura Taratura ogni 5 anni
Mulinello di precisione	2	FLOWPROBE	Misuratore correntometrico in corsi d'acqua superficiali	Controllo apparecchiature prima della campagna di misura Taratura ogni 5 anni
Campionatori a rete immanicata adatti al prelievo di macroinvertebrati per analisi I.B.E.	12	Costruzione artigianale conforme a specifiche protocollo IRSA CNR 29/2003 sez. 9000	Misure IBE	Non richiesta
Stereo-microscopio e microscopio	5	OLYMPUS/NIKON/SWIFT/ROV CK2TR/MIC.SZ4045	Misure IBE, STAR_ICMi e RQE_IBMR	Non richiesta
Campionatori Surber adatti al prelievo di macroinvertebrati per analisi STAR_ICMi	5	Costruzione artigianale conforme a specifiche manuale ISPRA 111/2014	Misure STAR_ICMi	Non richiesta

Tab. 4.1 Quadro sinottico delle strumentazioni utilizzate

5 Risultati – Fase A.O. - 2018

5.1 Fosso Giordano

MONITORAGGIO AMBIENTALE LINEA FERROVIARIA AV/CA BRESCIA - VERONA - FASE A.O.							
Comparto	ACQUE SUPERFICIALI						
Corso d'acqua oggetto di monitoraggio	Fosso Giordano						
Codice stazione	AV-PE-SU-19	AV-PE-SU-20					
Posizione	Valle	Monte					
Provincia	Verona	Verona					
Comune	Peschiera del Garda	Peschiera del Garda					
Località	Otella	Broglie					
Coordinate CRO	X: 1630208.6	X: 1630244.3					
Coordinate GBO	Y: 5032216.9	Y: 5031908.9					

5.1.1 Monitoraggio parametri biologici

Tab. 5.1 Caratterizzazione delle stazioni biologiche del Fosso Giordano

Il Fosso Giordano presenta nella stazione di monte la sponda sinistra cementificata mentre la sponda destra ed il fondo naturali, nella stazione di valle l'intera sezione è naturale. L'ambiente circostante la stazione di monte è urbanizzato, mentre la stazione di valle è posizionata tra vigneti.

Di seguito si riportano i risultati delle analisi biologiche effettuate nel corso dell'anno 2018, per maggiori dettagli si rimanda ai certificati allegati.

RISULTATI QUALITÀ BIOLOGICA – INDICE I.B.E.							
AV-PE-SU-19 (Valle)	I CAMPAGNA GENNAIO 2018	II CAMPAGNA APRILE 2018	III CAMPAGNA LUGLIO 2018	IV CAMPAGNA OTTOBRE 2018			
Totale U. S.	4	8	10	10			
Valore IBE	2	3	5-6	6-7			
Classe di qualità	V	V	IV-III	III			
Giudizio di qualità Ambiente fortemente degradato		Ambiente fortemente degradato	Ambiente sensibilmente alterato	Ambiente alterato			

Tab. 5.2 Risultati qualità biologica, indice IBE – Fase AO – 2018 – stazione AV-PE-SU-19 (Valle)

La stazione di valle del Fosso Giordano presenta una V classe di qualità IBE nei primi due rilievi dell'anno 2018; nella terza campagna di monitoraggio il corso d'acqua presentava una IV-III classe di qualità e nella quarta campagna una III classe di qualità IBE.

RISULTATI QUALITÀ BIOLOGICA – INDICE I.B.E.								
AV-PE-SU-20 (Monte)	I CAMPAGNA GENNAIO 2018	II CAMPAGNA APRILE 2018	III CAMPAGNA LUGLIO 2018	IV CAMPAGNA OTTOBRE 2018				
Totale U. S.	11	12	8	10				
Valore IBE	7-6	7	6	6-7				
Classe di qualità	III	III	III	III				
Giudizio di qualità	Ambiente alterato	Ambiente alterato	Ambiente alterato	Ambiente alterato				

Tab. 5.3 Risultati qualità biologica, indice IBE – Fase AO – 2018 – stazione AV-PE-SU-20 (Monte)

Il Fosso Giordano presenta nella stazioe di monte una III classe di qualità IBE corrispondente ad un ambiente alterato in tutte le campagne di monitoraggio del 2018.

RISULTATI QUALITÀ BIOLOGICA – INDICE ICMI									
AV-PE-SU-19 (Valle) I CAMPAGNA II CAMPAGNA III CAMPAGNA III CAMPAGNA IV CAMPAGNA OTTOBRE 2018 OTTOBRE 2018									
N° specie	-	14	-	34					
ICMi	-	0,72	-	0,74					
Classe di qualità	-	Buono	-	Buono					

Tab. 5.4 Risultati dell'indice ICMi per la stazione AV-PE-SU-19 (Valle), fase AO - 2018

L'indice ICMi nella stazione di valle del Fosso Giordano ha fatto registrare in entrambe le campagne di monitoraggio previste una classe buona.

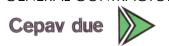
RISULTATI QUALITÀ BIOLOGICA – INDICE ICMI									
AV-PE-SU-20 (Monte) I CAMPAGNA GENNAIO 2018 II CAMPAGNA III CAMPAGNA III CAMPAGNA III CAMPAGNA OTTOBRE 2018									
N° specie	-	50	-	44					
ICMi	-	0,83	-	0,77					
Classe di qualità	-	Buono	-	Buono					

Tab. 5.5 Risultati dell'indice ICMi per la stazione AV-PE-SU-20 (Monte), fase AO - 2018

Anche nella stazione di valle del Fosso Giordano l'indice ICMi si è posizionato con una classe buona in entrambi i campionamenti eseguiti.

5.1.2 Monitoraggio parametri chimico-fisici e microbiologici

Di seguito si riportano i risultati delle analisi chimico-fisiche e microbiologiche nel corso dell'anno 2018, per maggiori dettagli si rimanda ai certificati allegati.


Stazione	AV-PE-SU-19 (Monte)	AV-PE-SU-20 (Valle)						
enominazione	Fosso Giordano							
	I CAMPAGNA – GENNAI	O 2018						
Operatori	Т. 1	-aye						
Note								
Foto	ART 13 DIVIETO O PESSA							

Operatori	T. F	Faye
Note		
Foto		

Tab. 5.6 Caratterizzazione delle stazioni chimico-fisiche del Fosso Giordano

RISULTATI QUALITÀ CHIMICO-FISICA E MICROBIOLOGICA									
Parametri	UdM	I CAMPAGNA GENNAIO 2018		II CAMPAGNA MAGGIO 2018		III CAMPAGNA LUGLIO 2018		IV CAMPAGNA OTTOBRE 2018	
		Monte	Valle	Monte	Valle	Monte	Valle	Monte	Valle
Temperatura	°C	8,8	8,7	17,4	17,9	22,8	23,6	15,7	15,4
pH	-	7,8	7,8	7,9	8	8	8	7,9	8,0

Progetto Lotto Codifica Documento Rev. Foglio Doc. N. INOR 11 EE2PEMB10B5001 A 22 di 121

	1	RISULTATI QUALITÀ CHIMICO-FISICA E MICROBIOLOGICA							
		I CAMP			II CAMPAGNA III CAN			IV CAM	
Parametri	UdM	GENNAIO 2018		MAGGIO 2018		LUGLIO 2018		OTTOBRE 2018	
		Monte	Valle	Monte	Valle	Monte	Valle	Monte	Valle
Conducibilità elettrica specifica	μS/cm a 20°C	623	697	635	683	585	623	589	536
Potenziale Redox	mV	10	138	36	42	176	162	26	27
Ossigeno disciolto (O ₂)	mg/l	6,33	8,97	7,05	8,22	5,29	4,7	1,33	1,52
Ossigeno disciolto (O ₂)	% di sat.	54,5	77,1	74,3	86,7	62	55,4	13,5	15,5
Solidi sospesi totali (SST)	mg/l	< 5	< 5	19	14	8	23	13	26
COD (O2)	mg/l	8	16	8	7	< 5	< 5	12	10
BOD5 (O2)	mg/l	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
TOC	mg/l	3,1	3,4	3,1	3,4	3,2	4,1	3,4	3,3
DOC	mg/l	3,1	3,2	3	3,1	3,5	3,3	3,2	2,4
Durezza	°F	30	39,2	32,6	35,8	32,6	34,4	33,8	30,7
	 	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
Alluminio (AI)	mg/l								
Alluminio totale (AI)	mg/l	38	40	175	150	147	264	95	174
Arsenico (As)	mg/l	5	4	3	3	4	3	3	3
Cadmio (Cd)	mg/l	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Calcio (Ca)	mg/l	86,3	115,9	84,6	92,3	81,3	94,3	90,4	79,6
Cromo esavalente (Cr)	mg/l	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Cromo totale (Cr)	mg/l	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Ferro (Fe)	mg/l	97	55	36	27	42	24	33	< 20
Ferro totale (Fe)	mg/l	263	174	281	223	323	309	200	214
Magnesio (Mg)	mg/l	21,9	26,6	29,8	31,5	22,9	22,5	23,1	21,9
Manganese (Mn)	mg/l	89	27	36	24	49	12	34	5
Mercurio (Hg)	mg/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.3
Nichel (Ni)	mg/l	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Piombo (Pb)	mg/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Potassio (K)	mg/l	4,4	3,2	3,8	2,1	3,6	3	3,4	2,9
Rame (Cu)	mg/l	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Silicio (Si)	mg/l	10,4	8,8	7,8	6,1	7,9	6,2	7,1	7,1
Sodio (Na)	mg/l	18,9	16,1	18,7	12,1	14,7	11,7	15,2	13
Zinco (Zn)	mg/l	< 10	21	< 10	< 10	< 10	< 10	< 10	< 10
Fosforo totale (P)	mg/l	0,176	0,128	0,054	0,025	0,064	0,064	0,1	0,11
Ortofosfato (PO ₄)	mg/l	0,3	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Azoto ammoniacale (N)	mg/l	2,39	1,86	0,34	0,06	0,06	0,05	0,09	< 0.0
Azoto nitrico (N)	mg/l	1,3	5,7	1,7	4,4	1,2	4,5	2,3	4,1
Azoto nitroso (N)	mg/l	< 6	< 6	209	68	28	26	55	39
Azoto totale (N)	mg/l	4,4	8,2	3,1	5,1	1,4	4,8	2,5	4,3
Cloruri (Cl)	mg/l	23	20	24	15	14	14	20	14
Solfati (SO ₄)	mg/l	26	41	30	40	28	38	39	40
Idrocarburi leggeri C<12	mg/l	< 30	< 30	< 30	< 30	< 30	< 30	< 30	< 30
Idrocarburi pesanti C>12	mg/l	< 30	< 30	< 30	< 30	< 30	< 30	< 30	< 30
Idrocarburi totali (espressi		Z 20	Z 20	~ 2N	Z 20	~ 20	~ 2N	~ 20	- 20
come n-esano) - somma	mg/l	< 30	< 30	< 30	< 30	< 30	< 30	< 30	< 30
TENSIOATTIVI									
Tensioattivi anionici (MBAS)	mg/l	0,32	0,25	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.0
Tensioattivi non ionici (TAS)	mg/l	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.0
COMPOSTI ORG. AROMATICI									
Benzene	mg/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	mg/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
orto-Xilene	mg/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 EE2PEMB10B5001 A 23 di 121

RISULTATI QUALITÀ CHIMICO-FISICA E MICROBIOLOGICA									
		I CAMP	AGNA	II CAM	PAGNA	III CAM	PAGNA	IV CAM	PAGNA
Parametri	UdM	GENNAI	O 2018	MAGG	O 2018	LUGLIC	2018	ОТТОВІ	RE 2018
		Monte	Valle	Monte	Valle	Monte	Valle	Monte	Valle
meta-Xilene	mg/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
para-Xilene	mg/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
COMPOSTI ORG. ALOGENATI									
Carbonio tetracloruro	mg/l	< 0.01	< 0.01	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2-clorotoluene	mg/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
3-clorotoluene	mg/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
4-clorotoluene	mg/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,2-dicloroetano	mg/l	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Diclorometano	mg/l	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15
Esaclorobutadiene	mg/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Tetracloroetilene	mg/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
1,1,1-tricloroetano	mg/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Tricloroetilene	mg/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Triclorometano	mg/l	0,07	0,04	0,02	0,02	0,05	< 0.01	0,01	< 0.01
CLOROBENZENI									
Monoclorobenzene	mg/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,2-diclorobenzene	mg/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,3-diclorobenzene	mg/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,4-diclorobenzene	mg/l	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,2,3-triclorobenzene	mg/l	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
1,2,4-triclorobenzene	mg/l	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
1,3,5-triclorobenzene	mg/l	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Esaclorobenzene	mg/l	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Conta Escherichia coli	UFC/100 ml	76000	88000	5300	730	1900	670	3600	1700

Tab. 5.7 Esito analisi chimico-fisiche

In tutti i monitoraggi effettuati non sono stati rilevati superamenti delle concentrazioni soglia di contaminazione (CSC).

RISULTATI MISURA DI PORTATA									
PARAMETRO	UNITA' DI MISURA	STAZIONE	I CAMPAGNA GENNAIO 2018	II CAMPAGNA APRILE 2018	III CAMPAGNA LUGLIO 2018	IV CAMPAGNA OTTOBRE 2018			
Doutete	Doubete3/-	AV-PE-SU-19	< 0,01	< 0,01	< 0,01	< 0,01			
Portata	m³/s	AV-PE-SU-20	< 0,01	< 0,01	< 0,01	< 0,01			

Tab. 5.8 Risultati delle misure di portata del Fosso Giordano, fase AO - 2018

Il Fosso Giordano ha presentato portate molto basse in tutti i monitoraggi dell'anno 2018, con valori simili tra la stazione di monte e quella di valle.

5.1.3 Monitoraggio della funzionalità fluviale I.F.F.

In data 31/07/2018 è stata effettuata una campagna di indagine in cui è stato monitorato il livello di funzionalità fluviale del fosso Giordano nel tratto che va da 50 m a valle della stazione di valle (AV-PE-SU-19) a 50 m a monte della stazione di monte (AV-PE-SU-20) per una lunghezza totale di 480 m. La valutazione secondo la metodica I.F.F. ha permesso di suddividere la porzione fluviale di indagine in 8 tratti omogenei.

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. 11 EE2PEMB10B5001 A 24 di 121

Nello specifico, nelle tabelle successive, si riportano i risultati ottenuti nei singoli tratti.

RISULTATI PER TRATTO - INDICE I.F.F.								
Tratto 1					Trati	to 2		
Lunghezza del tratto (n	n): 30	Larghezza	alveo morbida (m): 3	rbida (m): 3 Lunghezza del tratto (m): 39 Larghezza alveo morbida			lveo morbida (m): 3	
Sponda		ΟX	SX	Sponda	DX		SX	
Valore di I.F.F.	1	.01	128	Valore di I.F.F.	86		86	
Livello di funzionalità	III	IV	III	Livello di funzionalità IV		IV		
Giudizio di funzionalità	mediocre-scadente		mediocre	Giudizio di funzionalità	SCa	dente	scadente	

Tab. 5.9 Risultati dell'applicazione dell'Indice di Funzionalità Fluviale sul Fosso Giordano – Luglio 2018

RISULTATI PER TRATTO - INDICE I.F.F.									
Tratto 3 Tratto 4									
Lunghezza del tratto (n	n): 48	Larghezza	alveo morbida (m): 2	: 2 Lunghezza del tratto (m): 43 Larghezza alveo m			za del tratto (m): 43 Larghezza alveo morbida (m): 1		
Sponda	[ΟX	SX	Sponda	Sponda DX		S	х	
Valore di I.F.F.	3	36	36	Valore di I.F.F.	Valore di I.F.F. 86		11	8	
Livello di funzionalità		V	V	Livello di funzionalità IV		IV	III	IV	
Giudizio di funzionalità	pes	simo	pessimo	Giudizio di funzionalità	sca	idente	mediocre-	-scadente	

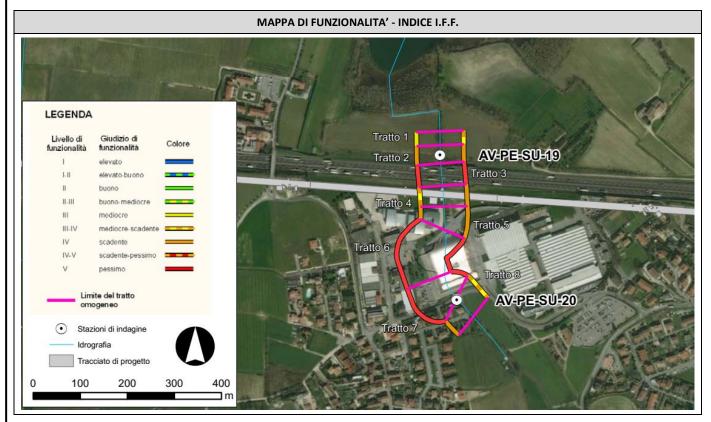
Tab. 5.10 Risultati dell'applicazione dell'Indice di Funzionalità Fluviale sul Fosso Giordano – Luglio 2018

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 EE2PEMB10B5001 A 25 di 121

RISULTATI PER TRATTO - INDICE I.F.F.								
Tratto 5 Tratto 6								
Lunghezza del tratto (n	Lunghezza del tratto (m): 49 Larghezza alveo morbida (m): 1			Lunghezza del tratto (m): 131 Larghezza alveo morbida (m):				
Sponda	DX	SX	Sponda	DX	SX			
Valore di I.F.F.	62	62	Valore di I.F.F.	46	46			
Livello di funzionalità	IV	IV	Livello di funzionalità	V	V			
Giudizio di funzionalità	scadente	scadente	Giudizio di funzionalità	pessim	o pessimo			

Tab. 5.11 Risultati dell'applicazione dell'Indice di Funzionalità Fluviale sul Fosso Giordano – Luglio 2018

RISULTATI PER TRATTO - INDICE I.F.F.									
Tratto 7 Tratto 8									
Lunghezza del tratto (m): 87 Larghezza alveo morbida (m): 1			Lunghezza del tratto (m): 52 Larghezza alveo morbida (m			alveo morbida (m): 1			
Sponda	DX	SX	Sponda		DX	SX			
Valore di I.F.F.	32	32	Valore di I.F.F.	1	105	82			
Livello di funzionalità	V	V	Livello di funzionalità	III	IV	IV			
Giudizio di funzionalità	pessimo	pessimo	Giudizio di funzionalità	mediocre-scadente		scadente			



Tab. 5.12 Risultati dell'applicazione dell'Indice di Funzionalità Fluviale sul Fosso Giordano – Luglio 2018

Il Fosso Giordano presenta in prevalenza una situazione pessima (livello di funzionalità V) sia sulla sponda destra che sulla sinistra, nel 55,4% del tratto di indagine.

Tab. 5.13 Mappa dei risultati dell'applicazione dell'I.F.F. sul Fosso Giordano – Luglio 2018

5.1.4 Confronto dei risultati tra le stazioni di monte e valle

Si riporta di seguito la tabella dove si raffrontano i dati relativi alle stazioni di MONTE e di VALLE mediante il calcolo del valore dei Δ VIP.

Qualità Biologica Fosso Giordano									
Dawawa atu:	AV-PE-SU-20 (Monte)	AV-PE-SU-19 (Valle)	AV/ID						
Parametri	Classe	Classe	ΔVIP						
	I CAMPAGNA AO - 2018								
IBE	III	V	> 1						
ICMi	-	-	-						
	II CAMPAGNA AO - 2018								
IBE	=	V	> 1						
ICMi	II .	II	0						
	III campagna AC) - 2018							
IBE	=	IV-III	< 1						
ICMi	-	-	-						
	IV campagna AC	D - 2018							
IBE	III	III	0						

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 EE2PEMB10B5001 A 27 di 121

	QUALITÀ BIOLOGICA FOSSO GIORDANO							
Parametri	AV-PE-SU-20 (Monte)	AV-PE-SU-19 (Valle)	ΔVΙΡ					
Parametri	Classe	Classe	ΔVΙΡ					
ICMi	Ш	II	0					

Tab. 5.14 Calcolo ΔVIP tra le stazioni di monte e valle della qualità biologica del Fosso Giordano – fase AO - 2018

QUALITÀ CHIMICO-FISICA E MICROBIOLOGICA FOSSO GIORDANO												
	I CAMPAGNA		II	CAMPAGE	NA A	III CAMPAGNA			IV CAMPAGNA			
Parametri	GE	NNAIO 20	18	M	MAGGIO 2018		L	UGLIO 201	8	OTTOBRE 2018		
	Monte	Valle	ΔVIP	Monte	Valle	ΔVIP	Monte	Valle	ΔVIP	Monte	Valle	ΔVIP
рН	7,8	7,8	0,0	7,9	8,0	-0,1	8,0	8,0	0,0	7,9	8,0	-0,1
Conducibilità	5,63	5,41	0,2	5,60	5,45	0,1	5,75	5,63	0,1	5,73	5,89	-0,2
OD (% sat.)	4,45	7,42	-3,0	6,86	8,67	-1,8	5,20	4,54	0,7	1,08	1,24	-0,2
SST	10,00	10,00	0,0	8,60	9,10	-0,5	9,70	8,20	1,5	9,20	7,94	1,3
COD	8,80	5,80	3,0	8,80	9,20	-0,4	10,00	10,00	0,0	7,20	8,00	-0,8
TOC	10,00	10,00	0,0	10,00	10,00	0,0	10,00	10,00	0,0	10,00	10,00	0,0
								valore				
Alluminio totale	6,96	6,80	0,2	1,00	2,00	-1,0	2,12	fuori	n.d.	4,20	1,04	3,2
								scala				
Cromo totale	9,43	9,43	0,0	9,43	9,43	0,0	9,43	9,43	0,0	9,43	9,43	0,0
Azoto ammoniacale	3,58	3,83	-0,2	6,80	9,14	-2,3	9,14	9,43	-0,3	8,29	9,71	-1,4
Cloruri	4,40	5,00	-0,6	4,20	6,00	-1,8	6,20	6,20	0,0	5,00	6,20	-1,2
Solfati	7,87	5,97	1,9	7,33	6,00	1,3	7,60	6,27	1,3	6,13	6,00	0,1
Idrocarburi totali	9,79	9,79	0,0	9,79	9,79	0,0	9,79	9,79	0,0	9,79	9,79	0,0
Tensioattivi anionici	6,40	7,33	-0,9	10,00	10,00	0,0	10,00	10,00	0,0	10,00	10,00	0,0
Tensioattivi non ionici	10,00	10,00	0,0	10,00	10,00	0,0	10,00	10,00	0,0	10,00	10,00	0,0
Conta Escherichia coli	2,80	2,60	0,2	5,96	8,30	-2,34	7,55	8,37	-0,82	6,70	7,65	-0,95

Tab. 5.15 Calcolo ΔVIP tra le stazioni di monte e valle della qualità chimica e biologica del Fosso Giordano – fase AO - 2018

Parametri biologici

Per quanto riguarda la comunità di macroinvertebrati e la comunità diatomica, essendo il parametro calcolato già sotto forma di indice, non viene effettuata la normalizzazione in VIP, ma si procede al calcolo della soglia valutando la differenza di classe tra monte e valle.

L'indice ICMi ha registrato una parità di classe tra la stazione di monte e quella di valle in tutte le campagne in cui è stato applicato, costantemente posizionato in II classe, il ΔVIP è 0.

Dal confronto tra i dati relativi alla stazione di monte e quella di valle si nota uno scadimento qualitativo di due classi IBE nel corso delle prime due campagne d'indagine 2018 (Δ VIP > 1), questa differenza risulta minima nella III campagna 2018 (Δ VIP < 1) e nulla nella IV campagna 2018 (Δ VIP = 0). La differenza di due classi tra la stazione di monte e quella di valle nelle prime due campagne è indice di variabilità e di pressioni sul corpo idrico già in essere prima dell'inizio dei cantieri dell'opera in esame.

Parametri chimico-fisici e microbiologici

Le analisi chimico-fisiche e microbiologiche mostrano il buono stato chimico-fisico delle acque della roggia. I VIP calcolati sono generalmente medio-alti, indice di una qualità ottimale.

Dal calcolo dei ΔVIP sono stati riscontrati alcuni superamenti della soglia di attenzione e/o intervento.

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. 11 EE2PEMB10B5001 A 28 di 121

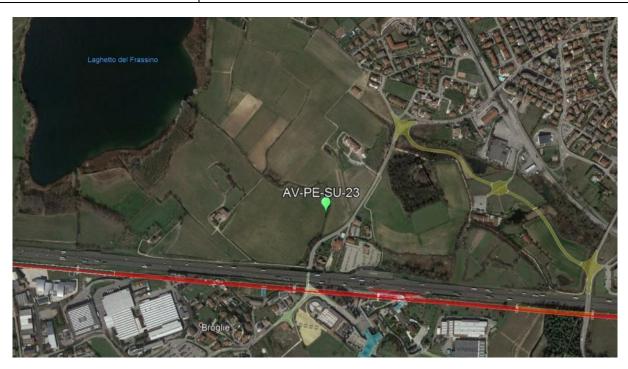
Per il parametro SST sonn stati irlevati superamenti nelle ultime due campagne con valori di Δ VIP pari a 1,5 e 1,3: tali valori verrano valutati con la prima campagna di corso d'opera.

Per il parametro COD è stato rilevato un Δ VIP pari a 3,0 nella prima campagna di monitoraggio; tale superamento non è stato rilevato nelle campagne successive.

Per il parametro *Alluminio* è stato rilevato un valore fuori scala nel punto di valle nella III campagna (e quindi non è statopossibile valutare un vlaore di VIP) ed un superamento del Δ VIP pari a 3,2 nella IV campagna: tali valori verrano valutati con la prima campagna di corso d'opera.

Per il parametro *Solfati* sono stati rilevati dei superamenti nelle prime tre campagne di monitoraggio (valori pari a 1,9, 1,3 e 1,3 rispettivamente); tali superamenti non sono stati rilevati nell'ultima campagna.

Durante la quarta campagna di monitoraggio il campionamento dei parametri microbiologici è stato efettuato in un giorno diverso da quelli chimici per problemi di natura tecnica.



Progetto Lotto Codifica Documento Rev. Foglio Doc. N. 11 EE2PEMB10B5001 A 29 di 121

5.2 Rio Paolmano

MONITORAGGIO AMB	BIENTALE LINEA FERROVIARIA AV/CA BRESCIA - VERONA - FASE A.O.
Comparto	ACQUE SUPERFICIALI
Corso d'acqua oggetto di monitoraggio	Rio Paolmano
Codice stazione	AV-PE-SU-23
Posizione	Valle
Provincia	Verona
Comune	Peschiera del Garda
Località	Serraglio
Coordinate CDO	X: 1630988.6
Coordinate GBO	Y: 5032318.3

5.2.1 Monitoraggio parametri biologici

Tabella Riassuntiva Stazioni Di Monitoraggio Parametri Biologici								
Stazione	azione AV-PE-SU-23 (Valle)							
Denominazione	Rio Paolmano							
Foto								

Tab. 5.16 Caratterizzazione delle stazioni biologiche del Rio Paolmano

Il Rio Paolmano è un piccolo corso d'acqua naturaliforme, privo di manufatti artificiali, il substrato è limoso, la vegetazione sulle sponde è erbacea continua in sinistra e arborea discontinua in destra.

Di seguito si riportano i risultati delle analisi biologiche effettuate nel corso dell'anno 2018, per maggiori dettagli si rimanda ai certificati allegati.

RISULTATI QUALITÀ BIOLOGICA – INDICE I.B.E.									
AV-PE-SU-23 (Valle)	I CAMPAGNA GENNAIO 2018	II CAMPAGNA APRILE 2018	III CAMPAGNA LUGLIO 2018	IV CAMPAGNA OTTOBRE 2018					
Totale U. S.	6	10	-	7					
Valore IBE	3-2	4-5	-	3					
Classe di qualità	V	IV	=	V					
Giudizio di qualità	Ambiente fortemente degradato	Ambiente molto alterato	-	Ambiente fortemente degradato					

Tab. 5.17 Risultati qualità biologica, indice IBE – Fase AO – 2018 – stazione AV-PE-SU-23 (Valle)

La stazione di valle del Rio Paolmano nella prima e nella quarta campagna di monitoraggio si classifica con una V classe, nella seconda campagna si è determinata una IV classe IBE. Nel corso della terza campagna di luglio 2018 il corso d'acqua si presentava in asciutta.

RISULTATI QUALITÀ BIOLOGICA – INDICE ICMI									
AV-PE-SU-19 (Valle) I CAMPAGNA II CAMPAGNA III CAMPAGNA III CAMPAGNA III CAMPAGNA IV CAMPAGNA OTTOBRE 2									
N° specie	-	48	-	46					
ICMi	-	0,39	-	0,53					
Classe di qualità	-	Scarso	-	Scarso					

Tab. 5.18 Risultati dell'indice ICMi per la stazione AV-PE-SU-23 (Valle), fase AO - 2018


L'indice ICMi nella stazione di valle del Rio Paolmano ha fatto registrare in entrambe le campagne di monitoraggio previste una classe scarsa.

5.2.2 Monitoraggio parametri chimico-fisici e microbiologici

Di seguito si riportano i risultati delle analisi chimico-fisiche e microbiologiche nel corso dell'anno 2018, per maggiori dettagli si rimanda ai certificati allegati.

	TABELLA RIASSUNTIVA STAZIONI DI MONITORAGGIO PARAMETRI CHIMICO-FISICI E BIOLOGICI
Stazione	AV-PE-SU-23
Denominazione	Rio Paolmano
	I CAMPAGNA – GENNAIO 2018
Operatori	T. Faye
Note	
Foto	
	II CAMPAGNA – MAGGIO 2018
Operatori	T. Faye
Note	
Foto	
	III CAMPAGNA – LUGLIO 2018
Operatori	T. Faye
Foto	

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 EE2PEMB10B5001 A 32 di 121

IV CAMP	AGNA -	OTTOE	3RE 2018
---------	--------	-------	----------

Operatori T. Faye

Note

Foto

Tab. 5.19 Caratterizzazione delle stazioni chimico-fisiche del Rio Paolmano

RISULTATI QUALITÀ CHIMICO-FISICA E MICROBIOLOGICA						
Parametri	UdM	I CAMPAGNA	II CAMPAGNA	III CAMPAGNA	IV CAMPAGNA	
Parametri	Udivi	GENNAIO 2018	MAGGIO 2018	LUGLIO 2018	OTTOBRE 2018	
Temperatura	°C	8,5	17,6	-	15,4	
рН	-	7,8	7,7	-	7,6	
Conducibilità elettrica specifica	μS/cm a 20°C	675	635	-	544	
Potenziale Redox	mV	98	-4	-	1	
Ossigeno disciolto (O ₂)	mg/l	9,38	3,02	-	1,19	
Ossigeno disciolto (O ₂)	% di sat.	80,3	31,5	-	11,9	
Solidi sospesi totali (SST)	mg/l	< 5	13	-	31	
COD (O2)	mg/l	13	15	-	17	
BOD5 (O2)	mg/l	< 5	< 5	-	< 5	
TOC	mg/l	4,2	5,4	-	5,3	
DOC	mg/l	4	4,8	-	3,8	
Durezza	°F	39	32,9	-	31,8	
Alluminio (Al)	mg/l	< 20	< 20	-	< 20	
Alluminio totale (Al)	mg/l	< 20	85	-	70	
Arsenico (As)	mg/l	3	3	-	3	
Cadmio (Cd)	mg/l	< 0.5	< 0.5	-	< 0.5	
Calcio (Ca)	mg/l	114,4	89	-	81,6	
Cromo esavalente (Cr)	mg/l	< 0.5	< 0.5	-	< 0.5	
Cromo totale (Cr)	mg/l	< 5	< 5	-	< 5	
Ferro (Fe)	mg/l	53	120	-	95	
Ferro totale (Fe)	mg/l	198	552	-	483	
Magnesio (Mg)	mg/l	27,2	28,1	-	24	
Manganese (Mn)	mg/l	80	129	-	85	
Mercurio (Hg)	mg/l	< 0.1	< 0.1	-	< 0.1	
Nichel (Ni)	mg/l	< 2	< 2	-	< 2	
Piombo (Pb)	mg/l	< 1	<1	-	< 1	
Potassio (K)	mg/l	3,5	2,5	-	3,5	
Rame (Cu)	mg/l	< 10	< 10	-	< 10	
Silicio (Si)	mg/l	9,3	6,1	-	5,8	
Sodio (Na)	mg/l	17,1	17,8	-	13,4	
Zinco (Zn)	mg/l	< 10	< 10	-	< 10	
Fosforo totale (P)	mg/l	0,089	0,219	-	0,225	

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 EE2PEMB10B5001 A 33 di 121

Damani - tirl		I CAMPAGNA	II CAMPAGNA	III CAMPAGNA	IV CAMPAGNA
Parametri	UdM	GENNAIO 2018	MAGGIO 2018	LUGLIO 2018	OTTOBRE 2018
Ortofosfato (PO ₄)	mg/l	< 0.2	< 0.2	-	< 0.2
Azoto ammoniacale (N)	mg/l	0,29	0,7	-	0,44
Azoto nitrico (N)	mg/l	< 1.0	< 1.0	-	< 1.0
Azoto nitroso (N)	mg/l	< 6	110	-	59
Azoto totale (N)	mg/l	1,6	1,6	-	< 1.0
Cloruri (Cl)	mg/l	22	22	-	17
Solfati (SO ₄)	mg/l	38	22	-	33
Idrocarburi leggeri C<12	mg/l	< 30	< 30	-	< 30
Idrocarburi pesanti C>12	mg/l	< 30	< 30	-	< 30
Idrocarburi totali (espressi come n-esano) - somma	mg/l	< 30	< 30	-	< 30
TENSIOATTIVI					
Tensioattivi anionici (MBAS)	mg/l	0,07	< 0.05	-	< 0.05
Tensioattivi non ionici (TAS)	mg/l	< 0.05	< 0.05	-	< 0.05
COMPOSTI ORG. AROMATICI					
Benzene	mg/l	< 0.1	< 0.1	-	< 0.1
Toluene	mg/l	< 1	<1	-	< 1
orto-Xilene	mg/l	< 1	<1	-	< 1
meta-Xilene	mg/l	< 1	<1	-	< 1
para-Xilene	mg/l	< 1	<1	-	< 1
COMPOSTI ORG. ALOGENATI					
Carbonio tetracloruro	mg/l	< 0.01	< 0.1	-	< 0.1
2-clorotoluene	mg/l	< 1	<1	-	< 1
3-clorotoluene	mg/l	< 1	<1	-	< 1
4-clorotoluene	mg/l	< 1	<1	-	< 1
1,2-dicloroetano	mg/l	< 0.3	< 0.3	-	< 0.3
Diclorometano	mg/l	< 0.15	< 0.15	-	< 0.15
Esaclorobutadiene	mg/l	< 0.01	< 0.01	=	< 0.01
Tetracloroetilene	mg/l	< 0.1	< 0.1	=	< 0.1
1,1,1-tricloroetano	mg/l	< 0.1	< 0.1	i i	< 0.1
Tricloroetilene	mg/l	< 0.1	< 0.1	-	< 0.1
Triclorometano	mg/l	< 0.01	< 0.01	i i	< 0.01
CLOROBENZENI					
Monoclorobenzene	mg/l	< 1	<1	=	< 1
1,2-diclorobenzene	mg/l	< 1	<1	=	< 1
1,3-diclorobenzene	mg/l	< 1	<1	=	< 1
1,4-diclorobenzene	mg/l	< 0.05	< 0.05	=	< 0.05
1,2,3-triclorobenzene	mg/l	< 0.4	< 0.4	-	< 0.4
1,2,4-triclorobenzene	mg/l	< 0.4	< 0.4	-	< 0.4
1,3,5-triclorobenzene	mg/l	< 0.4	< 0.4	-	< 0.4
Esaclorobenzene	mg/l	< 0.001	< 0.001	-	< 0.001
Conta Escherichia coli	UFC/100 ml	290	400	-	970

Tab. 5.20 Esito analisi chimico-fisiche

In tutti i monitoraggi effettuati non sono stati rilevati superamenti delle concentrazioni soglia di contaminazione (CSC).

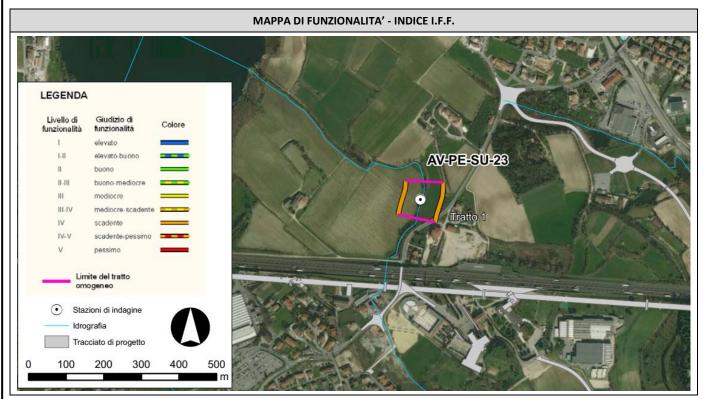
RISULTATI MISURA DI PORTATA						
PARAMETRO STAZIONE					IV CAMPAGNA OTTOBRE 2018	
Portata	m³/s	AV-PE-SU-23	< 0,01	< 0,01	-	< 0,01

Tab. 5.21 Risultati delle misure di portata del Rio Paolmano, fase AO - 2018

Nell'unica stazione di monitoraggio del Rio Paolmano si è sempre registrata una portata inferiore a 0,01 m³/s, nella campagna di luglio 2018 il CIS in questione risultava in asciutta.

5.2.3 Monitoraggio della funzionalità fluviale I.F.F.

In data 31/07/2018 è stata effettuata una campagna di indagine in cui è stato monitorato il livello di funzionalità fluviale del rio Paolmano nel tratto che va da 50 m a valle della stazione AV-PE-SU-23 a 50 m a monte della stessa per una lunghezza totale di 100 m. La valutazione secondo la metodica I.F.F. ha permesso di suddividere la porzione fluviale di indagine in un unico tratto omogeneo.


Nello specifico, nelle tabelle successive, si riportano i risultati ottenuti.

RISULTATI PER TRATTO - INDICE I.F.F.						
Tratto 1						
Lunghezza del tratto (m): 100	Larghezza	alveo morbida (m): 1			
Sponda		DX	SX			
Valore di I.F.F.		83	79			
Livello di funzionalità		IV	IV			
Giudizio di funzionalità	sca	adente	scadente			

Tab. 5.22 Risultati dell'applicazione dell'Indice di Funzionalità Fluviale sul Rio Paolmano – Luglio 2018

Il Rio Paolmano presenta una situazione scadente (livello di funzionalità IV) sia sulla sponda destra che sulla sinistra.

Tab. 5.23 Mappa dei risultati dell'applicazione dell'I.F.F. sul Rio Paolmano – Luglio 2018

5.2.4 Confronto dei risultati tra le stazioni di monte e valle

Non è stato possibile effettuare confronti monte-valle in quanto si tratta di una stazione singola.

Nella seguente tabella vengono riportati i valori di VIP rilevati nei monitoraggi.

QUALITÀ CHIMICO-FISICA E MICROBIOLOGICA RIO PAOLMANO						
Parametri	I CAMPAGNA GENNAIO 2018	II CAMPAGNA MAGGIO 2018	III CAMPAGNA LUGLIO 2018	IV CAMPAGNA OTTOBRE 2018		
pH	8,5	17,6	LUGLIU 2018	15,4		
Conducibilità	5,48	5,60	-	5,87		
OD (% sat.)	8,03	2,52	-	0,95		
SST	10,00	9,20	-	7,66		
COD	6,80	6,00	-	5,60		
TOC	10,0	9,84	-	9,88		
Alluminio totale	8,67	4,60	-	5,20		
Cromo totale	9,43	9,43	-	9,43		
Azoto ammoniacale	7,05	5,60	-	6,30		
Cloruri	4,60	4,60	-	5,60		
Solfati	6,27	8,40	-	6,93		
Idrocarburi totali	9,79	9,79	-	9,79		
Tensioattivi anionici	9,73	10,00	-	10,00		
Tensioattivi non ionici	10,00	10,00	-	10,00		
Conta Escherichia coli	8,79	8,67	-	8,03		

Tab. 5.24 Calcolo VIP della qualità chimica e biologica del Rio Paolmano – fase AO - 2018

Durante la quarta campagna di monitoraggio il campionamento dei parametri microbiologici è stato efettuato in un giorno diverso da quelli chimici per problemi di natura tecnica.

Progetto Lotto Codifica Documento Rev. Foglio Doc. N. 11 EE2PEMB10B5001 A 36 di 121

5.3 Rio Mano di Ferro

MONITORAGGIO AMBIENTALE LINEA FERROVIARIA AV/CA BRESCIA - VERONA - FASE A.O.					
Comparto	ACQUE SUPERFICIALI				
Corso d'acqua oggetto di monitoraggio	Rio Mano di Ferro				
Codice stazione	AV-PE-SU-25	AV-PE-SU-26			
Posizione	Monte	Valle			
Provincia	Verona	Verona			
Comune	Peschiera del Garda	Peschiera del Garda			
Località	Mano di Ferro	Mano di Ferro			
Coordinate GBO	X: 1632043.7	X: 1632618.0			
Cool diliate GBO	Y: 5032016.3	Y: 5031860.1			

5.3.1 Monitoraggio parametri biologici

Tab. 5.25 Caratterizzazione delle stazioni biologiche del Rio Mano di Ferro

Il Rio Mano di Ferro si presenta nella stazione di monte come un fontanile, con sponde naturali e con substrato limoso, l'ambiente circostante è costituito da urbanizzazione rada e colture stagionali. Nella stazione di valle il Rio Mano di Ferro presenta un andamento naturaliforme, il substrato è a granulometria medio-fine e l'ambiente circostante è costituito da vigneti.

Di seguito si riportano i risultati delle analisi biologiche effettuate nel corso dell'anno 2018, per maggiori dettagli si rimanda ai certificati allegati.

	RISULTATI QUALITÀ BIOLOGICA – INDICE I.B.E.										
AV-PE-SU-25 (Monte)	I CAMPAGNA GENNAIO 2018	II CAMPAGNA APRILE 2018	III CAMPAGNA LUGLIO 2018	IV CAMPAGNA OTTOBRE 2018							
Totale U. S.	10	10	8	5							
Valore IBE	3-4	3-4	5	2-3							
Classe di qualità	V-IV	V-IV	IV	V							
Giudizio di qualità	Ambiente notevolmente alterato	Ambiente notevolmente alterato	Ambiente molto alterato	Ambiente fortemente degradato							

Tab. 5.26 Risultati qualità biologica, indice IBE – Fase AO – 2018 – stazione AV-PE-SU-25 (Monte)

La stazione di monte del Rio Mano di Ferro presenta valori IBE piuttosto bassi in tutte le campagne di monitoraggio, i valori migliori si sono registrati nella III campagna, in cui ha raggiunto una IV classe, i peggiori si sono raggiunti nella IV campagna, in cui si è determinata una V classe.

	RISULTATI QUALITÀ BIOLOGICA – INDICE I.B.E.										
AV-PE-SU-26 (Valle)	I CAMPAGNA GENNAIO 2018	II CAMPAGNA APRILE 2018	III CAMPAGNA LUGLIO 2018	IV CAMPAGNA OTTOBRE 2018							
Totale U. S.	8	9	6	8							
Valore IBE	4	5	5-4	4							
Classe di qualità	Classe di qualità IV		IV	IV							
Giudizio di qualità	Ambiente molto alterato	Ambiente molto alterato	Ambiente molto alterato	Ambiente molto alterato							

Tab. 5.27 Risultati qualità biologica, indice IBE – Fase AO – 2018 – stazione AV-PE-SU-26 (Valle)

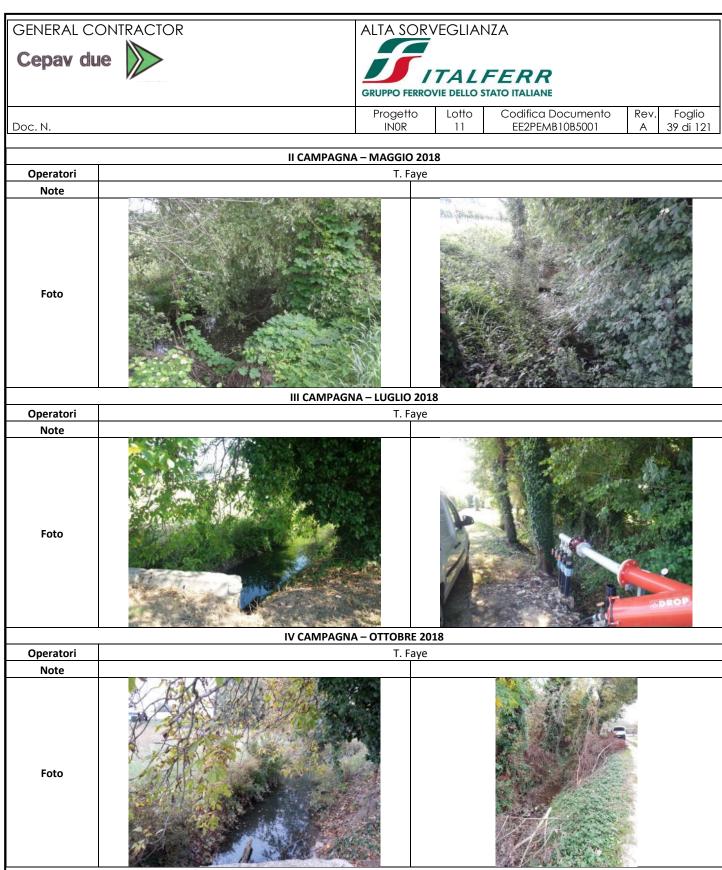
Il Rio Mano di Ferro presenta nella stazione di valle una IV classe di qualità IBE corrispondente ad un ambiente molto alterato in tutte le campagne di monitoraggio del 2018.

	RISULTATI QUALITÀ BIOLOGICA – INDICE ICMI										
AV-PE-SU-25 (Monte)	I CAMPAGNA GENNAIO 2018	II CAMPAGNA APRILE 2018	III CAMPAGNA LUGLIO 2018	IV CAMPAGNA OTTOBRE 2018							
N° specie	-	36	-	37							
ICMi	-	0,91	-	0,62							
Classe di qualità	-	Elevato	-	Sufficiente							

Tab. 5.28 Risultati dell'indice ICMi per la stazione AV-PE-SU-25 (Monte), fase AO - 2018

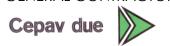
L'indice ICMi nella stazione di monte del Rio Mano di Ferro ha riportato un giudizio elevato nella campagna di aprile 2018 e sufficiente in quella di ottobre 2018.

RISULTATI QUALITÀ BIOLOGICA – INDICE ICMI										
AV-PE-SU-26 (Valle)	I CAMPAGNA GENNAIO 2018	II CAMPAGNA APRILE 2018	III CAMPAGNA LUGLIO 2018	IV CAMPAGNA OTTOBRE 2018						
N° specie	=	39	ī	59						
ICMi	-	0,62	-	0,65						
Classe di qualità	-	Sufficiente	-	Sufficiente						


Tab. 5.29 Risultati dell'indice ICMi per la stazione AV-PE-SU-26 (Valle), fase AO - 2018

Nella stazione di valle del Rio Mano di Ferro l'indice ICMi risulta avere un giudizio sufficiente in entrambi i campionamenti eseguiti.

5.3.2 Monitoraggio parametri chimico-fisici e microbiologici


Di seguito si riportano i risultati delle analisi chimico-fisiche e microbiologiche nel corso dell'anno 2018, per maggiori dettagli si rimanda ai certificati allegati.

Stazione	AV-PE-SU-25 (Monte)	AV-PE-SU-26 (Valle)							
Denominazione	Rio Mano	o di Ferro							
I CAMPAGNA – GENNAIO 2018									
Operatori	T. F	aye							
Note									
Foto									

Tab. 5.30 Caratterizzazione delle stazioni chimico-fisiche del Rio Mano di Ferro

RISULTATI QUALITÀ CHIMICO-FISICA E MICROBIOLOGICA										
Parametri	UdM	I CAMPAGNA GENNAIO 2018		II CAMI MAGGI		III CAM LUGLIO	_	IV CAMPAGNA OTTOBRE 2018		
		Monte	Valle	Monte	Valle	Monte	Valle	Monte	Valle	
Temperatura	°C	7	6,5	17,6	17,5	24,4	23,8	14,8	14,7	
рН	-	7,3	7,6	7,3	7,6	7,6	7,6	7,3	7,7	

Progetto Lotto Codifica Documento Rev. Foglio Doc. N. INOR 11 EE2PEMB10B5001 A 40 di 121

Danier atri	مماء	I CAMP	PAGNA	II CAM	MICROBIOLOGI PAGNA	III CAM	PAGNA		PAGNA
Parametri	UdM	GENNAI			O 2018	LUGLIC			RE 2018
Conducibilità elettrica	μS/cm a	Monte	Valle	Monte	Valle	Monte	Valle	Monte	Valle
specifica	20°C	738	730	702	706	617	452	586	552
Potenziale Redox	mV	136	53	-4	17	152	100	27	33
Ossigeno disciolto (O ₂)	mg/l	6,01	8,88	3,5	3,87	4,22	3,8	1,09	1,72
Ossigeno disciolto (O ₂)	% di sat.	49,5	72,4	37,1	40,9	51,1	45,7	10,7	17,2
Solidi sospesi totali (SST)	mg/l	< 5	8	12	17	21	7	12	11
COD (O2)	mg/l	15	16	37	26	64	7	23	12
BOD5 (O2)	mg/l	< 5	< 5	12	10	25	< 5	< 5	< 5
TOC	mg/l	5,9	4,9	10,4	8	12,5	5,2	7,1	3,9
DOC	mg/l	5	4,2	7,3	5,8	10,4	4,3	5,7	3,2
Durezza	°F	40	38,1	33,5	36,1	29,6	33,9	29,3	31,4
Alluminio (Al)	mg/l	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
Alluminio totale (Al)	mg/l	< 20	40	< 20	45	56	43	39	43
Arsenico (As)	mg/l	1	1	2	4	4	4	4	2
Cadmio (Cd)	mg/l	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Calcio (Ca)	mg/l	114,4	118,7	88,1	103,8	73	77,5	80,1	85,7
Cromo esavalente (Cr)	mg/l	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Cromo totale (Cr)	mg/l	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Ferro (Fe)	mg/l	58	59	182	124	253	37	88	29
Ferro totale (Fe)	mg/l	477	523	1144	724	809	161	788	379
Magnesio (Mg)	mg/l	26,8	26,2	29,3	29,3	20,5	17,9	20,6	20,9
Manganese (Mn)	mg/l	74	187	255	349	100	215	140	43
Mercurio (Hg)	mg/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Nichel (Ni)	mg/l	4	4	3	2	2	< 2	3	< 2
Piombo (Pb)	mg/l	< 1	< 1	< 1	< 1	<1	< 1	< 1	< 1
Potassio (K)	mg/l	3	3,1	3,5	3	3,6	3	3,6	2,6
Rame (Cu)	mg/l	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Silicio (Si)	mg/l	6,3	6,6	4,4	5,4	7,8	5,1	6,9	6,3
Sodio (Na)	mg/l	32,8	30,6	28	26,5	27,9	12,6	25,9	19,1
Zinco (Zn)	mg/l	11	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Fosforo totale (P)	mg/l	0,054	0,097	0,258	0,247	0,191	0,062	0,134	0,077
Ortofosfato (PO ₄)	mg/l	< 0.2	< 0.2	0,2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Azoto ammoniacale (N)	mg/l	< 0.04	< 0.04	0,19	0,18	0,17	< 0.04	0,37	< 0.04
Azoto nitrico (N)	mg/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Azoto nitroso (N)	mg/l	< 6	< 6	29	51	< 6	< 6	13	< 6
Azoto totale (N)	mg/l	< 1.0	1,1	2	1,8	2,2	< 1.0	< 1.0	1
Cloruri (CI)	mg/l	48	47	43	42	44	23	43	36
Solfati (SO ₄)	mg/l	19	25	12	10	16	13	12	23
Idrocarburi leggeri C<12	mg/l	< 30	< 30	< 30	< 30	< 30	< 30	< 30	< 30
Idrocarburi pesanti C>12	mg/l	< 30	< 30	< 30	< 30	< 30	< 30	< 30	< 30
Idrocarburi totali (espressi	mg/l	< 30	< 30	< 30	< 30	< 30	< 30	< 30	< 30
come n-esano) - somma	6/ '		1 33	, 55	1.55	, 55		1.55	. 55
TENSIOATTIVI									
Tensioattivi anionici (MBAS)	mg/l	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Tensioattivi non ionici (TAS)	mg/l	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
COMPOSTI ORG. AROMATICI									
Benzene	mg/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	mg/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
orto-Xilene	mg/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 EE2PEMB10B5001 A 41 di 121

	RISULTATI QUALITÀ CHIMICO-FISICA E MICROBIOLOGICA											
		I CAMP	AGNA	II CAM	PAGNA	III CAM	PAGNA	IV CAM	PAGNA			
Parametri	UdM	GENNAI	O 2018	MAGGI	O 2018	LUGLI	O 2018	ОТТОВІ	RE 2018			
		Monte	Valle	Monte	Valle	Monte	Valle	Monte	Valle			
meta-Xilene	mg/l	< 1	< 1	< 1	< 1	<1	< 1	< 1	< 1			
para-Xilene	mg/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1			
COMPOSTI ORG. ALOGENATI												
Carbonio tetracloruro	mg/l	< 0.01	< 0.01	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1			
2-clorotoluene	mg/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1			
3-clorotoluene	mg/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1			
4-clorotoluene	mg/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1			
1,2-dicloroetano	mg/l	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3			
Diclorometano	mg/l	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15			
Esaclorobutadiene	mg/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
Tetracloroetilene	mg/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1			
1,1,1-tricloroetano	mg/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1			
Tricloroetilene	mg/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1			
Triclorometano	mg/l	< 0.01	< 0.01	< 0.01	0,01	< 0.01	< 0.01	< 0.01	< 0.01			
CLOROBENZENI												
Monoclorobenzene	mg/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1			
1,2-diclorobenzene	mg/l	< 1	< 1	< 1	<1	< 1	< 1	< 1	< 1			
1,3-diclorobenzene	mg/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1			
1,4-diclorobenzene	mg/l	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05			
1,2,3-triclorobenzene	mg/l	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4			
1,2,4-triclorobenzene	mg/l	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4			
1,3,5-triclorobenzene	mg/l	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4			
Esaclorobenzene	mg/l	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001			
Conta Escherichia coli	UFC/100 ml	21	38	140	150	550	1900	700	550			

Tab. 5.31 Esito analisi chimico-fisiche

In tutti i monitoraggi effettuati non sono stati rilevati superamenti delle concentrazioni soglia di contaminazione (CSC).

	RISULTATI MISURA DI PORTATA										
PARAMETRO	PARAMETRO UNITA' DI STAZIONE		I CAMPAGNA GENNAIO 2018			IV CAMPAGNA OTTOBRE 2018					
Doutete	m³/s	AV-PE-SU-25	< 0,01	< 0,01	< 0,01	< 0,01					
Portata	111975	AV-PE-SU-26	< 0,01	< 0,01	< 0,01	< 0,01					

Tab. 5.32 Risultati delle misure di portata del Rio Mano di Ferro, fase AO - 2018

Il Rio Mano di Ferro ha presentato portate molto basse in tutti i monitoraggi dell'anno 2018, con valori simili tra la stazione di monte e quella di valle, inferiori a 10 l/s.

5.3.3 Monitoraggio della funzionalità fluviale I.F.F.

In data 31/07/2018 è stata effettuata una campagna di indagine in cui è stato monitorato il livello di funzionalità fluviale del rio Mano di Ferro nel tratto che va da 50 m a valle della stazione di valle (AV-PE-SU-26) a 50 m a monte della stazione di monte (AV-PE-SU-25) per una lunghezza totale di 850 m. La valutazione secondo la metodica I.F.F. ha permesso di suddividere la porzione fluviale di indagine in 6 tratti omogenei.

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. 11 EE2PEMB10B5001 A 42 di 121

Nello specifico, nelle tabelle successive, si riportano i risultati ottenuti nei singoli tratti.

RISULTATI PER TRATTO - INDICE I.F.F.											
		Tratto 2									
Lunghezza del tratto (n	n): 89	Larghezza	alveo morb	ida (m): 1	Lunghezza del tratto (m): 171 Larghezza alveo morbida (
Sponda	[ΟX	S	Х	Sponda	DX		SX			
Valore di I.F.F.	1	14	10	06	Valore di I.F.F.	87		Valore di I.F.F. 87		87	
Livello di funzionalità	III	IV	III	IV	Livello di funzionalità IV		IV				
Giudizio di funzionalità	mediocre	e-scadente	mediocre	-scadente	Giudizio di funzionalità	scadente		scadente			

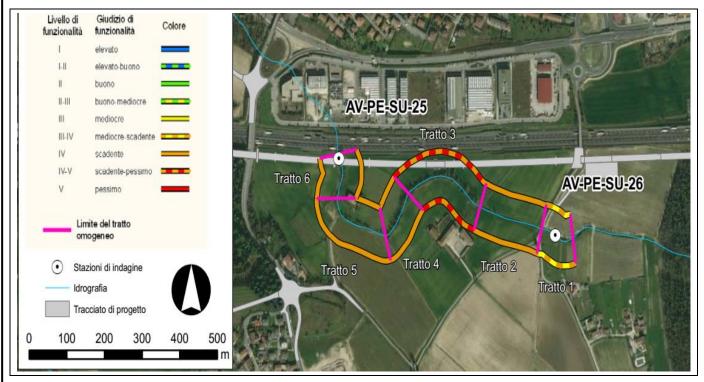
Tab. 5.33 Risultati dell'applicazione dell'Indice di Funzionalità Fluviale sul Rio Mano di Ferro – Luglio 2018

RISULTATI PER TRATTO - INDICE I.F.F.											
		Tratto 4									
Lunghezza del tratto (m): 220	Larghezza	alveo morbi	da (m): 2	2 Lunghezza del tratto (m): 107 Larghezza alveo m			alveo morbida (m): 2			
Sponda		ΟX	S	Х	Sponda	DX		SX			
Valore di I.F.F.	5	59	5	9	Valore di I.F.F.	63		63		63	
Livello di funzionalità	IV	V	IV	V	Livello di funzionalità IV		IV				
Giudizio di funzionalità	scadente	e-pessimo	scadente-pessimo		Giudizio di funzionalità	scadente		scadente			

Tab. 5.34 Risultati dell'applicazione dell'Indice di Funzionalità Fluviale sul Rio Mano di Ferro – Luglio 2018

	Progetto	Lotto	Codifica Documento	Rev.	Foglio
Doc. N.	INOR	11	EE2PEMB10B5001	Α	43 di 121

	RISULTATI PER TRATTO - INDICE I.F.F.										
	Tratto 5		Tratto 6								
Lunghezza del tratto (m): 167 Larghezza alveo morbida (m): 3		Lunghezza del tratto (r	n): 96 Larghezza	alveo morbida (m): 3							
Sponda	DX	SX	Sponda	DX	SX						
Valore di I.F.F.	83	91	Valore di I.F.F.	86	99						
Livello di funzionalità	IV	IV	Livello di funzionalità	IV	IV						
Giudizio di funzionalità	scadente	scadente	Giudizio di funzionalità	scadente	scadente						
	5										



Tab. 5.35 Risultati dell'applicazione dell'Indice di Funzionalità Fluviale sul Rio Mano di Ferro – Luglio 2018

Il Rio Mano di Ferro presenta in prevalenza una situazione scadente (livello di funzionalità IV) sia sulla sponda destra che sulla sinistra, nel 63,6% del tratto di indagine.

MAPPA DI FUNZIONALITA' - INDICE I.F.F.

Tab. 5.36 Mappa dei risultati dell'applicazione dell'I.F.F. sul Rio Mano di Ferro – Luglio 2018

5.3.4 Confronto dei risultati tra le stazioni di monte e valle

Si riporta di seguito la tabella dove si raffrontano i dati relativi alle stazioni di MONTE e di VALLE mediante il calcolo del valore dei Δ VIP.

	QUALITÀ BIOLOGICA RIO	Mano di Ferro	
Dawawa atu:	AV-PE-SU-25 (Monte)	AV-PE-SU-26 (Valle)	A)/ID
Parametri	Classe	Classe	ΔVΙΡ
	I CAMPAGNA AO	- 2018	
IBE	V-IV	IV	< 1
ICMi	-	-	-
	II CAMPAGNA A O	- 2018	
IBE	V-IV	IV	< 1
ICMi		Ш	> 1
	III campagna AC	0 - 2018	
IBE	IV	IV	0
ICMi	-	-	-
	IV CAMPAGNA AC) - 2018	•
IBE	V	IV	< 1
ICMi	Ш	III	0

Tab. 5.37 Calcolo ΔVIP tra le stazioni di monte e valle della qualità biologica del Rio Mano di Ferro – fase AO - 2018

QUALITÀ CHIMICO-FISICA E MICROBIOLOGICA RIO MANO DI FERRO

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 EE2PEMB10B5001 A 45 di 121

Parametri	_	I CAMPAGNA GENNAIO 2018			II CAMPAGNA MAGGIO 2018		III CAMPAGNA LUGLIO 2018			IV CAMPAGNA OTTOBRE 2018		
	Monte	Valle	∆VIP	Monte	Valle	∆VIP	Monte	Valle	∆VIP	Monte	Valle	∆VIP
рH	7,3	7,6	-0,3	7,3	7,6	-0,3	7,6	7,6	0,0	7,3	7,7	-0,4
Conducibilità	5,29	5,31	0,0	5,39	5,38	0,0	5,65	6,48	-0,8	5,74	5,84	-0,1
OD (% sat.)	3,96	6,48	-2,5	2,97	3,27	-0,3	4,11	3,66	0,5	0,86	1,38	-0,5
SST	10,00	9,70	0,3	9,30	8,80	0,5	8,40	9,80	-1,4	9,30	9,40	-0,1
COD	6,00	5,80	0,2	3,04	3,92	-0,9	0,88	9,20	-8,3	4,40	7,20	-2,8
TOC	9,64	10,00	-0,4	7,96	8,80	-0,8	7,75	9,92	-2,2	9,16	10,00	-0,8
Alluminio totale	8,67	6,80	1,9	8,67	6,40	2,3	5,76	6,56	-0,8	6,88	6,56	0,3
Cromo totale	9,43	9,43	0,0	9,43	9,43	0,0	9,43	9,43	0,0	9,43	9,43	0,0
Azoto ammoniacale	9,71	9,71	0,0	7,55	7,60	0,0	7,65	9,71	-2,1	6,65	9,71	-3,1
Cloruri	3,26	3,30	0,0	3,42	3,46	0,0	3,39	4,40	-1,0	3,42	3,65	-0,2
Solfati	8,80	8,00	0,8	9,73	10,00	-0,3	9,20	9,60	-0,4	9,73	8,27	1,5
Idrocarburi totali	9,79	9,79	0,0	9,79	9,79	0,0	9,79	9,79	0,0	9,79	9,79	0,0
Tensioattivi anionici	10,00	10,00	0,0	10,00	10,00	0,0	10,00	10,00	0,0	10,00	10,00	0,0
Tensioattivi non ionici	10,00	10,00	0,0	10,00	10,00	0,0	10,00	10,00	0,0	10,00	10,00	0,0
Conta Escherichia coli	9,79	9,62	0,17	8,96	8,94	0,01	8,50	7,55	0,95	8,33	8,50	-0,17

Tab. 5.38 Calcolo ΔVIP tra le stazioni di monte e valle della qualità chimica e biologica del Rio Mano di Ferro – fase AO - 2018

Parametri biologici

Per quanto riguarda la comunità di macroinvertebrati e la comunità diatomica, essendo il parametro calcolato già sotto forma di indice, non viene effettuata la normalizzazione in VIP, ma si procede al calcolo della soglia valutando la differenza di classe tra monte e valle.

Il Δ VIP calcolato per l'indice IBE è < 1 nella I, nella II e nella IV campagna 2018, attestando una leggera differenza tra la stazione di monte e quella di valle oppure, nel caso dell'ultima campagna, un miglioramento di una classe tra i punti AV-PE-SU-25 e AV-PE-SU-26. Nella III campagna di monitoraggio il Δ VIP è pari a 0.

L'indice ICMi nella II campagna di monitoraggio ha registrato uno scadimento di due classi di qualità tra il monte e il valle (Δ VIP > 1), tale differenza non è imputabile alle attività cantieristiche non ancora iniziate e non si è ripetuta nel corso della IV campagna dove entrambe le stazioni si sono posizionate in III classe con Δ VIP pari a 0.

Parametri chimico-fisici e microbiologici

Le analisi chimico-fisiche e microbiologiche mostrano il buono stato chimico-fisico delle acque della roggia. I VIP calcolati sono generalmente medio-alti, indice di una qualità ottimale.

Dal calcolo dei ΔVIP sono stati riscontrati alcuni superamenti della soglia di attenzione e/o intervento.

Per il paametro *Alluminio totale* sono stati rilevati due superamenti del Δ VIP nella prima e nella seconda campagna di monitoraggio (rispettivamente 1,9 e 2,3); tali superamenti non sono stati rilevati nelle campagne successive.

Per il parametro *Solfati* è stato rilevato un superamento nel IV monitoraggio con un valore di Δ VIP pari a 1,5: tali valori verrano valutati con la prima campagna di corso d'opera. I valori di VIP calcolati sono tuttavia elevati.

Durante la quarta campagna di monitoraggio il campionamento dei parametri microbiologici è stato efettuato in un giorno diverso da quelli chimici per problemi di natura tecnica.

Progetto Lotto Codifica Documento Rev. Foglio Doc. N. 11 EE2PEMB10B5001 A 46 di 121

5.4 Rio Bisaola

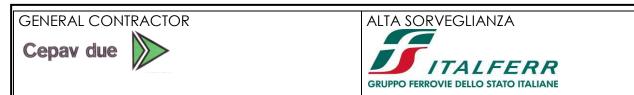
MONITORAGGIO AMBIENTALE LINEA FERROVIARIA AV/CA BRESCIA - VERONA - FASE A.O.						
Comparto	ACQUE SUPERFICIALI					
Corso d'acqua oggetto di monitoraggio	Rio B	isaola				
Codice stazione	AV-CN-SU-29	AV-CN-SU-30				
Posizione	Monte	Valle				
Provincia	Verona	Verona				
Comune	Castelnuovo del Garda	Castelnuovo del Garda				
Località	Campagna di sopra	Campagna di sotto				
Coordinate GBO	X: 1636619.1	X: 1635456.1				
Coordinate GBO	Y: 5032054.5	Y: 5031405.7				

5.4.1 Monitoraggio parametri biologici

Tab. 5.39 Caratterizzazione delle stazioni biologiche del Rio Bisaola

Entrambe le stazioni del Rio Bisaola si collocano in un contesto agricolo, l'ambiente circostante è caratterizzato da colture stagionalie urbanizzazione rada, il corso d'acqua si presenta naturaliforme, privo di manufatti artificiali, il substrato è fine, la vegetazione riparia è prevalentemente erbacea.

Di seguito si riportano i risultati delle analisi biologiche effettuate nel corso dell'anno 2018, per maggiori dettagli si rimanda ai certificati allegati.


	RISULTATI QUALITÀ BIOLOGICA – INDICE I.B.E.									
AV-CN-SU-29 (Monte)	I CAMPAGNA GENNAIO 2018	II CAMPAGNA APRILE 2018	III CAMPAGNA LUGLIO 2018	IV CAMPAGNA OTTOBRE 2018						
Totale U. S.	17	8	15	20						
Valore IBE	8	4	7-8	8-9						
Classe di qualità	=	IV	111-11	II						
Giudizio di qualità	Ambiente con moderati sintomi di alterazione	Ambiente molto alterato	Ambiente quasi alterato	Ambiente con moderati sintomi di alterazione						

Tab. 5.40 Risultati qualità biologica, indice IBE - Fase AO - 2018 - stazione AV-CN-SU-29 (Monte)

La stazione di monte del Rio Bisaola presenta una seconda classe di qualità nella prima e nella quarta campagna, nella seconda campagna si registra una IV classe e nella terza campagna una III-II classe.

	RISULTATI QUALITÀ BIOLOGICA – INDICE I.B.E.								
AV-CN-SU-30 (Valle)	I CAMPAGNA GENNAIO 2018	II CAMPAGNA APRILE 2018	III CAMPAGNA LUGLIO 2018	IV CAMPAGNA OTTOBRE 2018					
Totale U. S.	15	17	17	19					
Valore IBE	7-8	8	8	8					
Classe di qualità	III-II	II	II	II					
Giudizio di qualità	Ambiente quasi alterato	Ambiente con moderati sintomi di alterazione	Ambiente con moderati sintomi di alterazione	Ambiente con moderati sintomi di alterazione					

Tab. 5.41 Risultati qualità biologica, indice IBE – Fase AO – 2018 – stazione AV-CN-SU-30 (Valle)

	Progetto	Lotto	Codifica Documento	Rev.	Foglio
Doc. N.	INOR	11	EE2PEMB10B5001	Α	48 di 121

La stazione di valle del Rio Bisaola presenta una III-II classe nel corso del I monitoraggio, mentre nelle restanti campagne si classifica costantemente con una II classe, indice di ambiente con moderati sintomi di alterazione.

	RISULTATI QUALITÀ BIOLOGICA – INDICE ICMI									
AV-CN-SU-29 (Monte) I CAMPAGNA II CAMPAGNA III CAMPAGNA IV CAMPAGNA GENNAIO 2018 APRILE 2018 LUGLIO 2018 OTTOBRE 2018										
N° specie	-	65	-	46						
ICMi	-	0,91	-	0,67						
Classe di qualità	-	Elevato	-	Sufficiente						

Tab. 5.42 Risultati dell'indice ICMi per la stazione AV-CN-SU-29 (Monte), fase AO - 2018

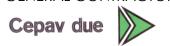
L'indice ICMi nella stazione di monte del Rio Bisaola ha riportato un giudizio elevato nella campagna di aprile 2018 e sufficiente in quella di ottobre 2018.

	RISULTATI QUALITÀ BIOLOGICA – INDICE ICMI									
AV-CN-SU-30 (Valle) I CAMPAGNA II CAMPAGNA III CAMPAGNA III CAMPAGNA III CAMPAGNA IV CAMPAGNA OTTOBRE 2018 OTTOBRE 2018										
N° specie	-	51	-	47						
ICMi	-	0,74	-	0,75						
Classe di qualità	-	Buono	-	Buono						

Tab. 5.43 Risultati dell'indice ICMi per la stazione AV-CN-SU-30 (Valle), fase AO - 2018

Nella stazione di valle del Rio Bisaola l'indice ICMi risulta avere un giudizio buono in entrambi i campionamenti eseguiti.

5.4.2 Monitoraggio parametri chimico-fisici e microbiologici


Di seguito si riportano i risultati delle analisi chimico-fisiche e microbiologiche nel corso dell'anno 2018, per maggiori dettagli si rimanda ai certificati allegati.

	TARELLA BIACCUNITULA CTATIONI DI MONITORA CCIO DAD	ANSTER CHARGO FISION PROPERTY
	TABELLA RIASSUNTIVA STAZIONI DI MONITORAGGIO PARA	I
Stazione	AV-CN-SU-29 (Monte)	AV-CN-SU-30 (Valle)
Denominazione	Rio B	isaola
	I CAMPAGNA – GENNAIO	2018
Operatori	T. F	aye
Note		
Foto	II CAMPAGNA – MAGGIC	2018
	II CAMPAGNA – MAGGIO	O 2018

		RISULTA	TI QUALITÀ CH	IIMICO-FISICA E	Microbiologi	CA			
Parametri	UdM	I CAMP GENNAI		II CAM MAGGI	PAGNA O 2018	III CAM LUGLIO	_	IV CAM OTTOBI	PAGNA RE 2018
		Monte	Valle	Monte	Valle	Monte	Valle	Monte	Valle
Temperatura	°C	6,6	6,1	17	17,8	19,2	18,5	17,3	13,9
рН	-	8,4	8,5	8,0	8,1	7,9	8,1	8,4	8,3
Conducibilità elettrica specifica	μS/cm a 20°C	563	575	720	721	322	291	1075	1122

Progetto Lotto Codifica Documento Rev. Foglio Doc. N. INOR 11 EE2PEMB10B5001 A 50 di 121

			•	IMICO-FISICA E				_	_
		I CAMP			PAGNA		PAGNA	IV CAM	
Parametri	UdM	GENNAI	O 2018	MAGG	O 2018	LUGLI	2018	ОТТОВІ	RE 2018
		Monte	Valle	Monte	Valle	Monte	Valle	Monte	Valle
Potenziale Redox	mV	73	71	48	58	207	184	29	26
Ossigeno disciolto (O ₂)	mg/l	16,18	18,57	8,85	9,09	6,37	6,27	5,17	4,96
Ossigeno disciolto (O ₂)	% di sat.	130,8	149,3	92,5	96,6	69,2	67,1	54,2	48,6
Solidi sospesi totali (SST)	mg/l	< 5	< 5	< 5	6	32	38	5	8
COD (O2)	mg/l	6	7	6	7	10	12	< 5	6
BOD5 (O2)	mg/l	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
TOC	mg/l	1,7	2,3	2,6	2,8	3,2	2,6	2,3	2,8
DOC	mg/l	1,7	2	2,5	2,7	1,8	2	2,1	2,5
Durezza	°F	33,7	36,5	39,7	38,5	15,3	14,2	37,2	38,4
Alluminio (Al)	mg/l	< 20	< 20	< 20	< 20	33	30	20	< 20
Alluminio totale (Al)	mg/l	42	27	142	57	417	491	38	24
Arsenico (As)	mg/l	2	2	2	3	2	2	2	2
Cadmio (Cd)	mg/l	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Calcio (Ca)	mg/l	118,8	113,5	111,7	108,1	42,5	39,2	109,3	111,1
Cromo esavalente (Cr)		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	mg/l	< 0.5		< 0.5		.			
Cromo totale (Cr)	mg/l		< 5		< 5	< 5	< 5	< 5	< 5
Ferro (Fe)	mg/l	183	71	< 20	< 20	< 20	< 20	< 20	< 20
Ferro totale (Fe)	mg/l	49	< 20	114	47	451	571	38	35
Magnesio (Mg)	mg/l	22,3	21,7	26,8	26,4	9,2	8,6	22,2	24,7
Manganese (Mn)	mg/l	< 5	< 5	8	9	< 5	< 5	< 5	< 5
Mercurio (Hg)	mg/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Nichel (Ni)	mg/l	3	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Piombo (Pb)	mg/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Potassio (K)	mg/l	3,2	4	3,4	3,7	3,4	3,5	7	8,8
Rame (Cu)	mg/l	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Silicio (Si)	mg/l	5,9	3,2	4,7	4,5	2,7	2,5	4,3	3,5
Sodio (Na)	mg/l	15,9	23,6	15,1	18,5	11,4	8,3	95	148,3
Zinco (Zn)	mg/l	14	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Fosforo totale (P)	mg/l	0,8	0,125	0,061	0,098	0,043	0,067	0,31	0,379
Ortofosfato (PO ₄)	mg/l	< 0.2	0,3	< 0.2	< 0.2	< 0.2	< 0.2	0,3	0,3
Azoto ammoniacale (N)	mg/l	0,1	< 0.04	0,07	0,1	< 0.04	< 0.04	< 0.04	< 0.04
Azoto nitrico (N)	mg/l	5,3	5	5,8	5,4	1,7	1,3	7,5	8,6
Azoto nitroso (N)	mg/l	< 6	< 6	46	54	11	10	22	58
Azoto totale (N)	mg/l	5,9	5,5	6,5	6,3	1,7	1,4	8,1	9,8
Cloruri (Cl)	mg/l	20	33	24	29	18	13	188	287
Solfati (SO ₄)	mg/l	57	58	56	56	37	36	60	62
Idrocarburi leggeri C<12	mg/l	< 30	< 30	< 30	< 30	< 30	< 30	< 30	< 30
Idrocarburi pesanti C>12	mg/l	< 30	< 30	< 30	< 30	< 30	< 30	< 30	< 30
Idrocarburi totali (espressi	/1	4 20	- 20	- 20	- 20	- 20	- 20	< 20	z 20
come n-esano) - somma	mg/l	< 30	< 30	< 30	< 30	< 30	< 30	< 30	< 30
TENSIOATTIVI									
Tensioattivi anionici (MBAS)	mg/l	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0,14
Tensioattivi non ionici (TAS)	mg/l	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
COMPOSTI ORG. AROMATICI									
Benzene	mg/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	mg/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
orto-Xilene	mg/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
meta-Xilene	mg/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
para-Xilene	mg/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 EE2PEMB10B5001 A 51 di 121

	RISULTATI QUALITÀ CHIMICO-FISICA E MICROBIOLOGICA									
Parametri	UdM	I CAMPAGNA GENNAIO 2018		II CAMPAGNA MAGGIO 2018		III CAMPAGNA LUGLIO 2018		IV CAM OTTOBI	_	
		Monte	Valle	Monte	Valle	Monte	Valle	Monte	Valle	
COMPOSTI ORG. ALOGENATI										
Carbonio tetracloruro	mg/l	< 0.01	< 0.01	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
2-clorotoluene	mg/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
3-clorotoluene	mg/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
4-clorotoluene	mg/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
1,2-dicloroetano	mg/l	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	
Diclorometano	mg/l	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	
Esaclorobutadiene	mg/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
Tetracloroetilene	mg/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
1,1,1-tricloroetano	mg/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Tricloroetilene	mg/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Triclorometano	mg/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
CLOROBENZENI										
Monoclorobenzene	mg/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
1,2-diclorobenzene	mg/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
1,3-diclorobenzene	mg/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
1,4-diclorobenzene	mg/l	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
1,2,3-triclorobenzene	mg/l	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	
1,2,4-triclorobenzene	mg/l	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	
1,3,5-triclorobenzene	mg/l	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	
Esaclorobenzene	mg/l	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Conta Escherichia coli	UFC/100 ml	120	100	1200	7800	590	680	1600	1300	

Tab. 5.45 Esito analisi chimico-fisiche

In tutti i monitoraggi effettuati non sono stati rilevati superamenti delle concentrazioni soglia di contaminazione (CSC).

	RISULTATI MISURA DI PORTATA									
PARAMETRO	UNITA' DI MISURA	STAZIONE	I CAMPAGNA GENNAIO 2018	II CAMPAGNA APRILE 2018	III CAMPAGNA LUGLIO 2018	IV CAMPAGNA OTTOBRE 2018				
Doutete	3/-	AV-CN-SU-29	< 0,01	0,23	0,38	0,01				
Portata	m³/s	AV-CN-SU-30	0,01	0,79	0,57	0,03				

Tab. 5.46 Risultati delle misure di portata del Rio Bisaola, fase AO - 2018

I valori di portata del Rio Bisaola risultano molto bassi nella prima e nell'ultima campagna, nella seconda e nella terza campagna si registrano portate più elevate, soprattutto nella stazione di valle, che presenta sempre una portata superiore alla stazione di monte. Nei rilievi di Aprile, Luglio e Ottobre il flusso della stazione di valle è incrementato dall'apporto di un immissario irriguo tra le due stazioni.

5.4.3 Monitoraggio della funzionalità fluviale I.F.F.

In data 31/07/2018 è stata effettuata una campagna di indagine in cui è stato monitorato il livello di funzionalità fluviale del rio Bisaola nel tratto che va da 50 m a valle della stazione di valle (AV-CN-SU-30) a 50 m a monte della

stazione di monte (AV-CN-SU-29) per una lunghezza totale di 1.500 m. La valutazione secondo la metodica I.F.F. ha permesso di suddividere la porzione fluviale di indagine in 13 tratti omogenei.

Nello specifico, nelle tabelle successive, si riportano i risultati ottenuti nei singoli tratti.

	RISULTATI PER TRATTO - INDICE I.F.F.										
Tratto 1					Tratto 2						
Lunghezza del tratto (n	ո)։ 45	Larghezza	alveo morb	ida (m): 2	Lunghezza del tratto (m): 200 Larghezz			alveo morbida (m): 2			
Sponda		ΟX	S	Х	Sponda	DX		SX			
Valore di I.F.F.	1	.19	1:	19	Valore di I.F.F.	110		124			
Livello di funzionalità	Ш	IV	III	IV	Livello di funzionalità	III	IV	III			
Giudizio di funzionalità	mediocre	e-scadente	mediocre	-scadente	Giudizio di funzionalità	mediocre-scadente		mediocre			

Tab. 5.47 Risultati dell'applicazione dell'Indice di Funzionalità Fluviale sul Rio Bisaola – Luglio 2018

RISULTATI PER TRATTO - INDICE I.F.F.										
Tratto 3					Tratto 4					
Lunghezza del tratto (m): 115	Larghezza	alveo morbi	ida (m): 2	Lunghezza del tratto (m	Lunghezza del tratto (m): 154 Larghezza				
Sponda		DX	S	х	Sponda	DX		SX		
Valore di I.F.F.	1	118	11	L4	Valore di I.F.F.	124		124		
Livello di funzionalità	III	IV	III	IV	Livello di funzionalità	III		III		
Giudizio di funzionalità	mediocr	e-scadente	te mediocre-scadente		Giudizio di funzionalità	mediocre		mediocre		

Tab. 5.48 Risultati dell'applicazione dell'Indice di Funzionalità Fluviale sul Rio Bisaola – Luglio 2018

	RISULTATI PER TRATTO - INDICE I.F.F.										
Tratto 5					Tratto 6						
Lunghezza del tratto (m): 145	Larghezza	Larghezza alveo morbida (m): 2		Lunghezza del tratto (m	Larghezza a	hezza alveo morbida (m): 3				
Sponda		DX		SX	Sponda	D	Х	SX			
Valore di I.F.F.		122		114	Valore di I.F.F.	12	22	122			
Livello di funzionalità		III	III IV		Livello di funzionalità	II.	II	III			
Giudizio di funzionalità	me	ediocre	medioci	e-scadente	Giudizio di funzionalità	medi	iocre	mediocre			

Tab. 5.49 Risultati dell'applicazione dell'Indice di Funzionalità Fluviale sul Rio Bisaola – Luglio 2018

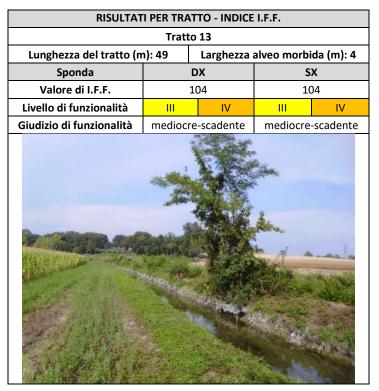
RISULTATI PER TRATTO - INDICE I.F.F.										
Tratto 7					Tratto 8					
Lunghezza del tratto (m): 110	Larghezza	alveo morb	ida (m): 3	Lunghezza del tratto (m): 177 Larghezza			alveo morbida (m): 3		
Sponda		DX	S	Х	Sponda	DX		SX		
Valore di I.F.F.	1	L14	1:	18	Valore di I.F.F.	114		122		
Livello di funzionalità	Ш	IV	III IV		Livello di funzionalità	Ш	IV	III		
Giudizio di funzionalità	mediocr	e-scadente	e mediocre-scadente		Giudizio di funzionalità	mediocre-scadente		mediocre		

Tab. 5.50 Risultati dell'applicazione dell'Indice di Funzionalità Fluviale sul Rio Bisaola – Luglio 2018

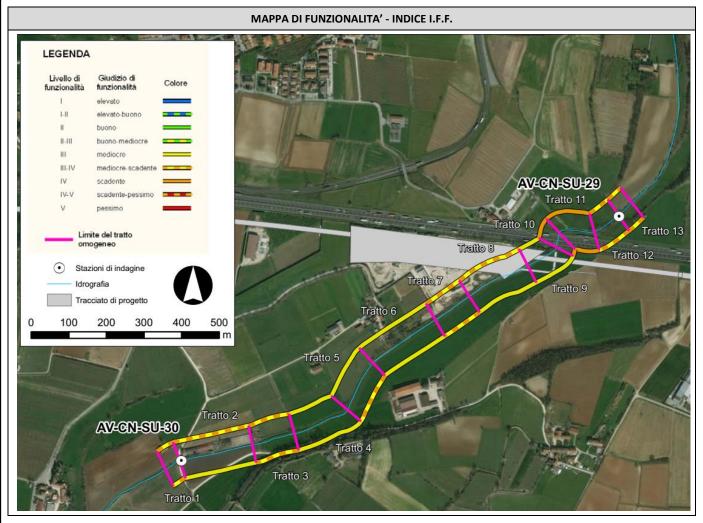
Progetto Lotto Codifica Documento Rev. Foglio Doc. N. 11 EE2PEMB10B5001 A 54 di 121

	RISULTATI PER TRATTO - INDICE I.F.F.										
	Tratto 9		Tratto 10								
Lunghezza del tratto (n	n): 95 Larghezza alveo morbida (m):		Lunghezza del tratto (r	n): 35 Larghezza	ezza alveo morbida (m): 4						
Sponda	DX	SX	Sponda	DX	SX						
Valore di I.F.F.	124	124 128 Valore di I.F.F.		76	76						
Livello di funzionalità	III	III	Livello di funzionalità	IV	IV						
Giudizio di funzionalità	mediocre	mediocre	Giudizio di funzionalità	scadente	scadente						

Tab. 5.51 Risultati dell'applicazione dell'Indice di Funzionalità Fluviale sul Rio Bisaola – Luglio 2018


RISULTATI PER TRATTO - INDICE I.F.F.									
	Tratto 12								
Lunghezza del tratto (n	el tratto (m): 98 Larghezza alveo morbida (m): 4		Lunghezza del tratto (r	m): 78	Larghezza alveo morbida (m): 4				
Sponda	DX	SX	Sponda	DX		S	Х		
Valore di I.F.F.	89	85	Valore di I.F.F.	1	104		108		
Livello di funzionalità	IV	IV	Livello di funzionalità	Ш	IV	Ш	IV		
Giudizio di funzionalità	scadente	scadente	Giudizio di funzionalità	mediocre-scadente		mediocre-scadente			

Tab. 5.52 Risultati dell'applicazione dell'Indice di Funzionalità Fluviale sul Rio Bisaola – Luglio 2018



Tab. 5.53 Risultati dell'applicazione dell'Indice di Funzionalità Fluviale sul Rio Bisaola – Luglio 2018

Il Rio Bisaola presenta mediamente in prevalenza una situazione mediocre (livello di funzionalità III) nel 47,3% del tratto di indagine. In particolare, sulla sponda destra prevale il giudizio mediocre-scadente (livello di funzionalità III-IV) con il 51,6% mentre nella sinistra prevale il giudizio mediocre (livello di funzionalità III) nel 55%.

Tab. 5.54 Mappa dei risultati dell'applicazione dell'I.F.F. sul Rio Bisaola – Luglio 2018

5.4.4 Confronto dei risultati tra le stazioni di monte e valle

Si riporta di seguito la tabella dove si raffrontano i dati relativi alle stazioni di MONTE e di VALLE mediante il calcolo del valore dei Δ VIP.

	QUALITÀ BIOLOGICA RIO BISAOLA										
Parametri	AV-CN-SU-29 (Monte)	AV-CN-SU-30 (Valle)	A)/ID								
Parametri	Classe	Classe	ΔVΙΡ								
	I CAMPAGNA AO - 2018										
IBE	II .	III-II	< 1								
ICMi	-	-	-								
	II CAMPAGNA AC	9 - 2018									
IBE	IV	II .	< 1								
ICMi	ICMi II 1										
	III CAMPAGNA AC) - 2018									

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 EE2PEMB10B5001 A 57 di 121

	QUALITÀ BIOLOGICA RIO BISAOLA									
Dawawa atui	AV-CN-SU-29 (Monte)	AV-CN-SU-30 (Valle)	A)/ID							
Parametri	Classe	Classe	ΔVΙΡ							
IBE	III-II	Ш	< 1							
ICMi	-	-	-							
	IV CAMPAGNA AC) - 2018								
IBE	Ш	Ш	0							
ICMi	III	II.	< 1							

Tab. 5.55 Calcolo ΔVIP tra le stazioni di monte e valle della qualità biologica del Rio Bisaola – fase AO - 2018

			QUALIT	à С німісо-І	FISICA E M IC	ROBIOLOGIC	a Rio Bisao	LA				
Parametri	I CAMPA Parametri GENNAIO				CAMPAGN AGGIO 20			CAMPAGN UGLIO 201			CAMPAGN TOBRE 20:	
	Monte	Valle	ΔVΙΡ	Monte	Valle	ΔVIP	Monte	Valle	ΔVIP	Monte	Valle	ΔVIP
рН	8,4	8,5	-0,1	8,0	8,1	-0,1	7,9	8,1	-0,2	8,4	8,3	0,1
Conducibilità	5,81	5,78	0,0	5,34	5,34	0,0	7,78	8,12	-0,3	4,28	4,13	0,1
OD (% sat.)	5,92	4,07	1,9	7,52	5,77	1,8	5,92	5,71	0,2	4,42	3,89	0,5
SST	10,00	10,00	0,0	10,00	9,90	0,1	7,60	7,26	0,3	10,00	9,70	0,3
COD	9,60	9,20	0,4	9,60	9,20	0,4	8,00	7,20	0,8	10,00	9,60	0,4
TOC	10,00	10,00	0,0	10,00	10,00	0,0	10,00	10,00	0,0	10,00	10,00	0,0
							valore	valore				
Alluminio totale	6,64	7,84	-1,2	2,32	5,72	-3,4	fuori	fuori	n.d.	6,96	8,13	-1,2
							scala	scala				
Cromo totale	9,43	9,43	0,0	9,43	9,43	0,0	9,43	9,43	0,0	9,43	9,43	0,0
Azoto ammoniacale	8,00	9,71	-1,7	8,86	8,00	0,9	9,71	9,71	0,0	9,71	9,71	0,0
										valore	valore	
Cloruri	5,00	3,74	1,3	4,20	3,87	0,3	5,40	6,40	-1,0	fuori	fuori	n.d.
										scala	scala	
Solfati	5,51	5,49	0,0	5,54	5,54	0,0	6,40	6,53	-0,1	5,43	5,37	0,1
Idrocarburi totali	9,79	9,79	0,0	9,79	9,79	0,0	9,79	9,79	0,0	9,79	9,79	0,0
Tensioattivi anionici	10,00	10,00	0,0	10,00	10,00	0,0	10,00	10,00	0,0	10,00	8,80	1,2
Tensioattivi non ionici	10,00	10,00	0,0	10,00	10,00	0,0	10,00	10,00	0,0	10,00	10,00	0,0
Conta Escherichia coli	8,98	9,00	-0,02	7,90	5,63	2,27	8,46	8,36	0,10	7,70	7,85	-0,15

Tab. 5.56 Calcolo ΔVIP tra le stazioni di monte e valle della qualità chimica e biologica del Rio Bisaola – fase AO - 2018

Parametri biologici

Per quanto riguarda la comunità di macroinvertebrati e la comunità diatomica, essendo il parametro calcolato già sotto forma di indice, non viene effettuata la normalizzazione in VIP, ma si procede al calcolo della soglia valutando la differenza di classe tra monte e valle.

Il ΔVIP calcolato per l'indice IBE è < 1 nelle prime tre campagne 2018, attestando una leggera differenza tra la stazione di monte e quella di valle oppure, nel caso della seconda e della terza campagna, un miglioramento tra i punti AV-CN-SU-29 e AV-CN-SU-30. Nella IV campagna di monitoraggio il ΔVIP è pari a 0.

L'indice ICMi nella II campagna di monitoraggio rileva uno scadimento di una classe di qualità tra il monte ed il valle (Δ VIP = 1), tale differenza non si ripete nel corso della IV campagna dove la stazione di valle presenta una migliore classe di qualità rispetto alla stazione di monte.

Parametri chimico-fisici e microbiologici

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 EE2PEMB10B5001 A 58 di 121

Le analisi chimico-fisiche e microbiologiche mostrano il buono stato chimico-fisico delle acque della roggia. I VIP calcolati sono generalmente medio-alti, indice di una qualità ottimale.

Dal calcolo dei ΔVIP sono stati riscontrati superamenti della soglia di attenzione e/o intervento.

Per il parametro *Ossigeno Disciolto* sono stati rilevati superamenti nella prima e nella seconda campagna (valori pari a 1,9 e 1,8 rispettivamente); tali superamenti non sono stati rilevati nelle campagne successive.

Per il parametro *Alluminio totale* sono stati rilevati dei valori fuori scala nelle stazioni di monte e di valle nel terzo monitoraggio.

Per il parametri *Cloruri* è stato rilevato un supermanto nella prima campagna ($\Delta VIP = 1,3$) e dei valori fuori scala nelle stazioni di monte e di valle nella IV campagna.

Per il parametro *Tensioattivi anionici* è stato rilevato un superamento nel IV monitoraggio con un valore di ΔVIP pari a 1,2: i valori di VIP sono tuttavia elevati. Tali valori verrano valutati con la prima campagna di corso d'opera.

Infine per il parametro *Escherichia Coli* è stato rilevato un seperamento nella II campagna non rilevata nelle campagne successive.

Progetto Lotto Codifica Documento Rev. Foglio Doc. N. 11 EE2PEMB10B5001 A 59 di 121

5.5 Rio Tionello

MONITORAGGIO AMBIEN	MONITORAGGIO AMBIENTALE LINEA FERROVIARIA AV/CA BRESCIA - VERONA - FASE A.O.							
Comparto	ACQUE S	SUPERFICIALI						
Corso d'acqua oggetto di monitoraggio	Rio Tionello							
Codice stazione	AV-CN-SU-31	AV-SO-SU-32						
Posizione	Monte	Valle						
Provincia	Verona	Verona						
Comune	Castelnuovo del Garda	Sona						
Località	Ferratella	Valcerea						
Coordinate GBO	X: 1638072.8	X: 1637682.4						
Coordinate GBO	Y: 5032257.3	Y: 5031268.6						

GENERAL CONTRACTOR Cepav due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Documento Rev. Foglio INOR 11 EE2PEMB10B5001 A 60 di 121

5.5.1 Monitoraggio parametri biologici

Tab. 5.57 Caratterizzazione delle stazioni biologiche del Rio Tionello

Il Rio Tionello è un piccolo corso d'acqua a carattere naturaliforme, privo di manufatti artificiali, l'ambiente circostante la stazione di monte è costituito da urbanizzazione rada in destra e da colture stagionali in sinistra, nella stazione di valle da colture stagionali in destra e da prati in sinistra. La composizione del substrato varia tra le due stazioni, a monte si presenta limoso mentre a valle la granulometria è medio fine, con prevalenza di ghiaia e ciottoli. Di seguito si riportano i risultati delle analisi biologiche effettuate nel corso dell'anno 2018, per maggiori dettagli si rimanda ai certificati allegati.

RISULTATI QUALITÀ BIOLOGICA – INDICE I.B.E.									
AV-CN-SU-31 (Monte) I CAMPAGNA II CAMPAGNA III CAMPAGNA III CAMPAGNA III CAMPAGNA IV CAMPAGNA OTTOBRE 2018									
Totale U. S.	5	7	18	6					
Valore IBE	2-3	4	8	3-2					
Classe di qualità	V	IV	=	V					
Giudizio di qualità	Ambiente fortemente degradato	Ambiente molto alterato	Ambiente con moderati sintomi di alterazione	Ambiente fortemente degradato					

Tab. 5.58 Risultati qualità biologica, indice IBE - Fase AO - 2018 - stazione AV-CN-SU-31 (Monte)

La stazione di monte del Rio Tionello presenta una V classe IBE nel primo e nel quarto campionamento, nella seconda campagna si classifica con una IV classe, nella terza campagna si registra il dato migliore, corrispondente ad una seconda classe IBE.

RISULTATI QUALITÀ BIOLOGICA – INDICE I.B.E.								
AV-SO-SU-32 (Valle) I CAMPAGNA II CAMPAGNA III CAMPAGNA III CAMPAGNA III CAMPAGNA IV CAMPAGNA OTTOBRE 2								
Totale U. S.	16	16 11 19		11				
Valore IBE	8-7 6-5		8	7-6				
Classe di qualità	11-111	III-IV	II	III				
Giudizio di qualità	Ambiente quasi alterato	Ambiente sensibilmente alterato	Ambiente con moderati sintomi di alterazione	Ambiente alterato				

Tab. 5.59 Risultati qualità biologica, indice IBE - Fase AO - 2018 - stazione AV-SO-SU-32 (Valle)

La stazione di valle del Rio Tionello oscilla tra una III-IV ed una II classe di qualità IBE, il giudizio migliore si registra nella campagna di luglio 2018, quello peggiore nella campagna di aprile 2018.

RISULTATI QUALITÀ BIOLOGICA – INDICE ICMI								
AV-CN-SU-31 (Monte) I CAMPAGNA II CAMPAGNA III CAMPAGNA IV CAMPAGNA GENNAIO 2018 APRILE 2018 LUGLIO 2018 OTTOBRE 2018								
N° specie	-	24	-	26				
ICMi	-	0,64	-	0,70				
Classe di qualità	-	Sufficiente	-	Buono				

Tab. 5.60 Risultati dell'indice ICMi per la stazione AV-CN-SU-31 (Monte), fase AO - 2018

L'indice ICMi nella stazione di monte del Rio Tionello riporta un giudizio sufficiente nella campagna di aprile 2018 e buono nella campagna di ottobre 2018.

RISULTATI QUALITÀ BIOLOGICA – INDICE ICMI									
AV-SO-SU-32 (Valle) I CAMPAGNA II CAMPAGNA III CAMPAGNA III CAMPAGNA III CAMPAGNA III CAMPAGNA OTTOBRE 2018									
N° specie	-	- 35		30					
ICMi	-	0,69	-	0,66					
Classe di qualità	-	Sufficiente	-	Sufficiente					

Tab. 5.61 Risultati dell'indice ICMi per la stazione AV-SO-SU-32 (Valle), fase AO - 2018

Nella stazione di valle del Rio Tionello l'indice ICMi risulta avere un giudizio sufficiente in entrambe le campagne d'indagine.

5.5.2 Monitoraggio parametri chimico-fisici e microbiologici

Di seguito si riportano i risultati delle analisi chimico-fisiche e microbiologiche nel corso dell'anno 2018, per maggiori dettagli si rimanda ai certificati allegati.

Stazione	AV-SO-SU-32 (Valle)							
Denominazione	ne Rio Tionello							
	I CAMPAGNA – GENNAIG	2018						
Operatori T. Faye								
Note								
Foto								

GENERAL CONTRACTOR Cepav due Doc. N.

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 EE2PEMB10B5001 A 62 di 121

II CAMPAGNA – MAGGIO 2018

Operatori T. Faye

Note

Foto

III CAMPAGNA – LUGLIO 2018

 Operatori
 T. Faye

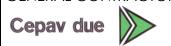
Note

Foto

IV CAMPAGNA – OTTOBRE 2018

Operatori T. Faye

Note


Foto

Tab. 5.62 Caratterizzazione delle stazioni chimico-fisiche del Rio Tionello

RISULTATI QUALITÀ CHIMICO-FISICA E MICROBIOLOGICA									
Parametri	UdM	I CAMP GENNAI		II CAM MAGGI		III CAM LUGLIO		IV CAM OTTOBI	_
		Monte	Valle	Monte	Valle	Monte	Valle	Monte	Valle
Temperatura	°C	8,3	11	17,4	13,6	19,4	20,5	15,6	16,7
рН	-	7,8	7,7	7,9	8,0	7,9	7,8	8,0	7,8

Progetto Lotto Codifica Documento Rev. Foglio Doc. N. INOR 11 EE2PEMB10B5001 A 63 di 121

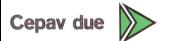
		I CAMF	PAGNA		PAGNA	III CAM	PAGNA		PAGNA
Parametri	UdM	GENNAIO 2018		MAGGIO 2018		LUGLIO 2018		OTTOBRE 2018	
		Monte	Valle	Monte	Valle	Monte	Valle	Monte	Valle
Conducibilità elettrica specifica	μS/cm a 20°C	719	691	745	377	361	412	707	635
Potenziale Redox	mV	-35	54	-44	44	132	155	0	17
Ossigeno disciolto (O ₂)	mg/l	10,02	8,69	8,48	10,98	5,41	5,1	4,07	3,52
Ossigeno disciolto (O ₂)	% di sat.	85,3	78,7	89,9	107,7	59,2	56,9	41,4	36,5
Solidi sospesi totali (SST)	mg/l	6	6	12	14	14	19	5	7
COD (O2)	mg/l	12	16	12	8	11	15	8	6
BOD5 (O2)	mg/l	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
TOC	mg/l	3,6	5,2	3,4	2,1	2,7	3	3,5	3
DOC	mg/l	3,5	5,2	3,1	2	2,1	2,3	3,2	2,8
Durezza	°F	35,7	35,5	37,1	20,8	18,8	22	36,1	34
Alluminio (Al)	mg/l	< 20	< 20	< 20	20	26	26	< 20	< 20
Alluminio totale (Al)	mg/l	33	103	48	195	251	253	23	37
Arsenico (As)	mg/l	1	2	2	2	2	2	1	2
Cadmio (Cd)	mg/l	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Calcio (Ca)	mg/l	127,4	131,1	116,8	63,1	54,9	64,6	103,3	101,6
Cromo esavalente (Cr)	mg/l	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Cromo totale (Cr)	mg/l	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Ferro (Fe)	mg/l	182	161	35	34	33	50	< 20	37
Ferro totale (Fe)	mg/l	82	394	69	163	229	299	40	91
Magnesio (Mg)	mg/l	22,9	23,8	20,2	12	10,1	11,7	21,5	20,4
Manganese (Mn)	mg/l	23	38	15	10	6	13	13	21
Mercurio (Hg)	mg/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Nichel (Ni)	mg/l	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Piombo (Pb)	mg/l	<1	<1	<1	<1	<1	<1	<1	< 1
Potassio (K)	mg/l	7,8	5,2	5,9	2,8	3,5	3,7	6	5,1
Rame (Cu)	mg/l	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Silicio (Si)	mg/l	9,5	8,8	7,3	4,2	3,3	3,8	5,4	5
Sodio (Na)	mg/l	38,8	35	25,4	10	6,7	8,9	32,9	26,5
Zinco (Zn)	mg/l	17	11	10	< 10	< 10	18	12	< 10
Fosforo totale (P)	mg/l	0,561	0,572	0,255	0,043	0,053	0,122	0,785	0,738
Ortofosfato (PO ₄)	mg/l	1,4	1,1	< 0.2	< 0.2	< 0.2	< 0.2	0,7	0,7
Azoto ammoniacale (N)	mg/l	4,64	2,02	0,13	0,06	0,05	0,22	0,41	0,49
Azoto nitrico (N)	mg/l	3,8	4,4	4,1	2,3	1,5	2	4,8	3,2
Azoto nitroso (N)	mg/l	< 6	< 6	50	36	18	30	74	83
Azoto totale (N)	mg/l	9,3	7,5	4,8	3	1,6	2,5	5,2	3,8
Cloruri (Cl)	mg/l	48	48	37	16	8	11	44	30
Solfati (SO ₄)	mg/l	62	99	58	43	38	41	62	67
Idrocarburi leggeri C<12	mg/l	< 30	< 30	< 30	< 30	< 30	< 30	< 30	< 30
Idrocarburi pesanti C>12	mg/l	< 30	< 30	< 30	< 30	< 30	< 30	< 30	< 30
Idrocarburi totali (espressi	ma/l	< 30	< 30	< 30	< 30	< 30	< 30	< 30	< 30
come n-esano) - somma	mg/l	\ 30	\ 3U	\ 3U	\ 3U	\ 3U	\ 3U	\ 3U	\ 30
TENSIOATTIVI									
Tensioattivi anionici (MBAS)	mg/l	< 0.05	0,05	< 0.05	< 0.05	< 0.05	< 0.05	0,24	0,06
Tensioattivi non ionici (TAS)	mg/l	< 0.05	2	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
COMPOSTI ORG. AROMATICI									
Benzene	mg/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	mg/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
orto-Xilene	mg/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 EE2PEMB10B5001 A 64 di 121

	RISULTATI QUALITÀ CHIMICO-FISICA E MICROBIOLOGICA									
		I CAMP	AGNA	II CAM	PAGNA	III CAM	PAGNA	IV CAM	PAGNA	
Parametri	UdM	GENNAIO 2018		MAGGI	MAGGIO 2018		O 2018	OTTOBRE 2018		
		Monte	Valle	Monte	Valle	Monte	Valle	Monte	Valle	
meta-Xilene	mg/l	< 1	< 1	< 1	<1	< 1	< 1	< 1	< 1	
para-Xilene	mg/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
COMPOSTI ORG. ALOGENATI										
Carbonio tetracloruro	mg/l	< 0.01	< 0.01	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
2-clorotoluene	mg/l	< 1	< 1	< 1	<1	< 1	< 1	< 1	< 1	
3-clorotoluene	mg/l	< 1	< 1	< 1	<1	< 1	< 1	< 1	< 1	
4-clorotoluene	mg/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
1,2-dicloroetano	mg/l	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	
Diclorometano	mg/l	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	
Esaclorobutadiene	mg/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
Tetracloroetilene	mg/l	0,2	< 0.1	0,2	< 0.1	< 0.1	< 0.1	0,1	< 0.1	
1,1,1-tricloroetano	mg/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Tricloroetilene	mg/l	1	0,3	0,7	< 0.1	< 0.1	< 0.1	0,4	< 0.1	
Triclorometano	mg/l	0,03	0,03	0,01	0,02	< 0.01	0,02	0,02	0,02	
CLOROBENZENI										
Monoclorobenzene	mg/l	< 1	< 1	< 1	<1	< 1	< 1	< 1	< 1	
1,2-diclorobenzene	mg/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
1,3-diclorobenzene	mg/l	< 1	< 1	< 1	<1	< 1	< 1	< 1	< 1	
1,4-diclorobenzene	mg/l	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
1,2,3-triclorobenzene	mg/l	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	
1,2,4-triclorobenzene	mg/l	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	
1,3,5-triclorobenzene	mg/l	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	
Esaclorobenzene	mg/l	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Conta Escherichia coli	UFC/100 ml	20000	3000	1600	2800	3000	58000	38000	28000	

Tab. 5.63 Esito analisi chimico-fisiche

In tutti i monitoraggi effettuati non sono stati rilevati superamenti delle concentrazioni soglia di contaminazione (CSC).


	RISULTATI MISURA DI PORTATA									
PARAMETRO	III CAMPAGNA LUGLIO 2018	IV CAMPAGNA OTTOBRE 2018								
Portata m³/s	m3/c	AV-CN-SU-31	< 0,01	0,03	0,33	0,04				
	1119/5	AV-SO-SU-32	0,04	0,11	0,35	0,05				

Tab. 5.64 Risultati delle misure di portata del Rio Tionello, fase AO - 2018

I valori di portata del Rio Tionello risultano bassi nella prima e nell'ultima campagna, nella seconda e nella terza campagna si registrano portate maggiori, nella stazione di valle si è sempre rilevata una portata superiore alla stazione di monte.

5.5.3 Monitoraggio della funzionalità fluviale I.F.F.

In data 01/08/2018 è stata effettuata una campagna di indagine in cui è stato monitorato il livello di funzionalità fluviale del rio Tionello nel tratto che va da 50 m a valle della stazione di valle (AV-SO-SU-32) a 50 m a monte della stazione di monte (AV-CN-SU-31) per una lunghezza totale di 1.700 m. La valutazione secondo la metodica I.F.F. ha permesso di suddividere la porzione fluviale di indagine in 12 tratti omogenei.

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. 11 EE2PEMB10B5001 A 65 di 121

Nello specifico, nelle tabelle successive, si riportano i risultati ottenuti nei singoli tratti.

RISULTATI PER TRATTO - INDICE I.F.F.									
	Tratto 1		Tratto 2						
Lunghezza del tratto (m): 175 Larghezza	alveo morbida (m): 3	Lunghezza del tratto (n	ո)։ 159	: 159 Larghezza alveo morbida (m): 3				
Sponda	DX	SX	Sponda		DX	SX			
Valore di I.F.F.	144	144	Valore di I.F.F.	1	144	152			
Livello di funzionalità	III	III	Livello di funzionalità		III	III			
Giudizio di funzionalità	mediocre	mediocre	Giudizio di funzionalità	me	diocre	mediocre			

Tab. 5.65 Risultati dell'applicazione dell'Indice di Funzionalità Fluviale sul Rio Tionello - Agosto 2018

RISULTATI PER TRATTO - INDICE I.F.F.								
	to 3		Tratto 4					
Lunghezza del tratto (m): 374 Larghezza alveo morbida (m): 3				Lunghezza del tratto (m): 273 Larghezza alveo morbida (m)			lveo morbida (m): 3	
Sponda	DX		SX	Sponda		DX	SX	
Valore di I.F.F.		149	153	Valore di I.F.F.		144	134	
Livello di funzionalità	III		III	Livello di funzionalità	ınzionalità		III	
Giudizio di funzionalità	ediocre	mediocre	Giudizio di funzionalità	me	diocre	mediocre		

Tab. 5.66 Risultati dell'applicazione dell'Indice di Funzionalità Fluviale sul Rio Tionello - Agosto 2018

Progetto Lotto Codifica Documento Rev. Foglio Doc. N. 11 EE2PEMB10B5001 A 66 di 121

RISULTATI PER TRATTO - INDICE I.F.F.									
Tratto 5 Tratto 6									
Lunghezza del tratto (m	to (m): 146 Larghezza alveo morbida (m): 3 Lunghezza del tratto (r			n): 48 Larghezza alveo morbida (m): 5					
Sponda	DX	SX	Sponda	DX	SX				
Valore di I.F.F.	Valore di I.F.F. 124		Valore di I.F.F.	82	82				
Livello di funzionalità	III	III	Livello di funzionalità	IV	IV				
Giudizio di funzionalità			Giudizio di funzionalità	scadente	scadente				

Tab. 5.67 Risultati dell'applicazione dell'Indice di Funzionalità Fluviale sul Rio Tionello - Agosto 2018

RISULTATI PER TRATTO - INDICE I.F.F.									
Tratto 7						Tratt	ю 8		
Lunghezza del tratto (n	n): 98 Larghezza		alveo mor	bida (m): 3	3 Lunghezza del tratto (m): 50 Larghezza alveo morbida (m			alveo morbida (m): 3	
Sponda		DX		SX	Sponda	DX		SX	
Valore di I.F.F.		95	:	107	Valore di I.F.F.		88	82	
Livello di funzionalità		IV	Ш	IV	Livello di funzionalità		IV	IV	
Giudizio di funzionalità	sca	adente	mediocr	e-scadente	Giudizio di funzionalità	sca	dente	scadente	

Tab. 5.68 Risultati dell'applicazione dell'Indice di Funzionalità Fluviale sul Rio Tionello - Agosto 2018

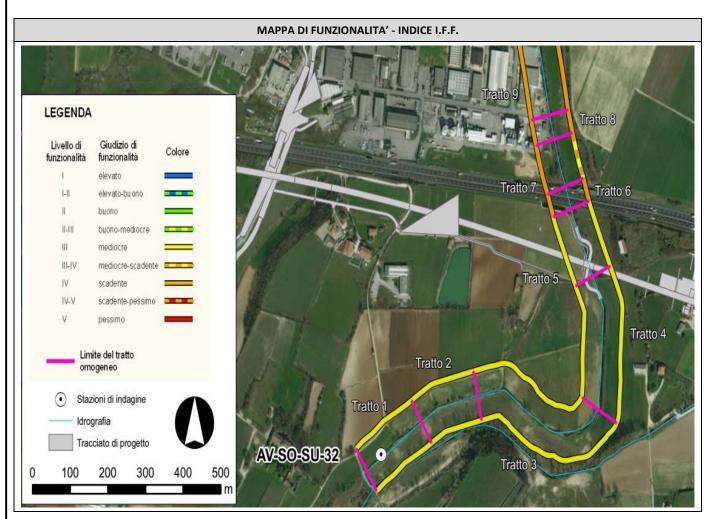
GENERAL CONTRACTOR Cepav due

Progetto INOR Lotto Codifica Documento Foglio Doc. N. EE2PEMB10B5001 67 di 121 11

RISULTATI PER TRATTO - INDICE I.F.F.									
Tratto 9 Tratto 10									
Lunghezza del tratto (m): 210 Larghezza	alveo morbida (m): 3	Lunghezza del tratto (m): 41 Larghezza alveo morbida						
Sponda	DX	SX	Sponda	DX	SX				
Valore di I.F.F.	84	88	Valore di I.F.F.	91	99				
Livello di funzionalità	IV	IV	Livello di funzionalità	IV	IV				
Giudizio di funzionalità	scadente	scadente	Giudizio di funzionalità	scadente	scadente				

Tab. 5.69 Risultati dell'applicazione dell'Indice di Funzionalità Fluviale sul Rio Tionello - Agosto 2018

RISULTATI PER TRATTO - INDICE I.F.F.									
Tratto 11 Tratto 12									
Lunghezza del tratto (n	n): 43	Larghezza	alveo morbi	ida (m): 3	Lunghezza del tratto (m): 83 Larghezza alveo morbida (n			alveo morbida (m): 3	
Sponda	ı	ЭX	S	Х	Sponda	DX		SX	
Valore di I.F.F.		58	5	8	Valore di I.F.F.	9	94	94	
Livello di funzionalità	IV	V	IV V		Livello di funzionalità		IV	IV	
Giudizio di funzionalità	scadent	e-pessimo	scadente	-pessimo	Giudizio di funzionalità	sca	dente	scadente	



Tab. 5.70 Risultati dell'applicazione dell'Indice di Funzionalità Fluviale sul Rio Tionello - Agosto 2018

Il Rio Tionello presenta in prevalenza una situazione mediocre (livello di funzionalità III) sia sulla sponda destra che sulla sinistra, nel 66,4% del tratto di indagine.

Tab. 5.71 Mappa dei risultati dell'applicazione dell'I.F.F. sul Rio Tionello - Agosto 2018

5.5.4 Confronto dei risultati tra le stazioni di monte e valle

Si riporta di seguito la tabella dove si raffrontano i dati relativi alle stazioni di MONTE e di VALLE mediante il calcolo del valore dei Δ VIP.

	Qualità Biologica Rio Tionello								
Parametri	AV-CN-SU-31 (Monte) AV-SO-SU-32 (Valle)								
Parametri	Classe	Classe	ΔVΙΡ						
	I CAMPAGNA AO - 2018								
IBE	V	II-III	< 1						
ICMi	-	-	-						
	II CAMPAGNA AO - 2018								

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 EE2PEMB10B5001 A 69 di 121

QUALITÀ BIOLOGICA RIO TIONELLO										
Down atui	AV-CN-SU-31 (Monte)	AV-SO-SU-32 (Valle)	A)/ID							
Parametri –	Classe	Classe	ΔVΙΡ							
IBE	IV	III-IV	< 1							
ICMi	Ш	Ш	0							
	III CAMPAGNA AO - 2018									
IBE	Ш	Ш	0							
ICMi	-	-	-							
	IV CAMPAGNA AO - 2018									
IBE	V	Ш	< 1							
ICMi	Ш	Ш	1							

Tab. 5.72 Calcolo ΔVIP tra le stazioni di monte e valle della qualità biologica del Rio Tionello – fase AO - 2018

	QUALITÀ CHIMICO-FISICA E MICROBIOLOGICA RIO TIONELLO											
	10	CAMPAGN	Α	II	CAMPAGI	NA	III	CAMPAGN	NA	IV	CAMPAGI	NΑ
Parametri	GE	NNAIO 20	18	M	AGGIO 20	18	L	UGLIO 201	.8	ОТ	OTTOBRE 2018	
	Monte	Valle	∆VIP	Monte	Valle	ΔVIP	Monte	Valle	∆VIP	Monte	Valle	ΔVIP
pН	7,8	7,7	0,1	7,9	8,0	-0,1	7,9	7,8	0,1	8,0	7,8	0,2
Conducibilità	5,34	5,43	-0,1	5,27	7,23	-2,0	7,39	6,88	0,5	5,38	5,60	-0,2
OD (% sat.)	8,53	7,74	0,8	9,25	9,66	-0,4	4,92	4,69	0,2	3,31	2,92	0,4
SST	9,90	9,90	0,0	9,30	9,10	0,2	9,10	8,60	0,5	10,00	9,80	0,2
COD	7,20	5,80	1,4	7,20	8,80	-1,6	7,60	6,00	1,6	8,80	9,60	-0,8
TOC	10,00	9,92	0,1	10,00	10,00	0,0	10,00	10,00	0,0	10,00	10,00	0,0
							valore	valore				
Alluminio totale	7,36	3,88	3,5	6,16	0,20	6,0	fuori	fuori	n.d.	8,27	7,04	1,2
							scala	scala				
Cromo totale	9,43	9,43	0,0	9,43	9,43	0,0	9,43	9,43	0,0	9,43	9,43	0,0
Azoto ammoniacale	2,52	3,76	-1,2	7,85	9,14	-1,3	9,43	7,40	2,0	6,45	6,05	0,4
Cloruri	3,26	3,26	0,0	3,62	5,80	-2,2	7,40	6,80	0,6	3,39	3,84	-0,4
Solfati	5,37	4,31	1,1	5,49	5,91	-0,4	6,27	5,97	0,3	5,37	5,23	0,1
Idrocarburi totali	9,79	9,79	0,0	9,79	9,79	0,0	9,79	9,79	0,0	9,79	9,79	0,0
Tensioattivi anionici	10,00	10,00	0,0	10,00	10,00	0,0	10,00	10,00	0,0	7,47	9,87	-2,4
		valore										
Tensioattivi non ionici	10,00	fuori	n.d.	10,00	10,00	0,0	10,00	10,00	0,0	10,00	10,00	0,0
		scala										
Conta Escherichia coli	8,98	9,00	-0,02	7,90	5,63	2,27	8,46	8,36	0,10	7,70	7,85	-0,15

Tab. 5.73 Calcolo ΔVIP tra le stazioni di monte e valle della qualità chimica e biologica del Rio Tionello – fase AO - 2018

Parametri biologici

Per quanto riguarda la comunità di macroinvertebrati e la comunità diatomica, essendo il parametro calcolato già sotto forma di indice, non viene effettuata la normalizzazione in VIP, ma si procede al calcolo della soglia valutando la differenza di classe tra monte e valle.

Il Δ VIP calcolato per l'indice IBE nella terza campagna è pari a 0, nelle restanti campagne è < 1, dato da un miglioramento tra la stazione di monte e quella di valle.

L'indice ICMi nella II campagna di monitoraggio rileva una parità di classe tra la stazione di monte e la stazione di valle (Δ VIP = 0), nell'ultima campagna si registra uno scadimento di una classe tra il monte e il valle, determinando un Δ VIP = 1.

	Progetto	Lotto	Codifica Documento	Rev.	Foglio
Doc. N.	INOR	11	EE2PEMB10B5001	Α	70 di 121

Parametri chimico-fisici e microbiologici

Le analisi chimico-fisiche e microbiologiche mostrano il buono stato chimico-fisico delle acque della roggia. I VIP calcolati sono generalmente medio-alti, indice di una qualità ottimale.

Dal calcolo dei ΔVIP sono stati riscontrati superamenti della soglia di attenzione e/o intervento.

Per il parametro *COD* nella prima e nella terza campagna sono stati rilevati dei superamenti pari a 1,4 e 1,6 rispettivamente; nelle rispettive campagne successive non sono stati rilevati superamenti.

Per il parametro *Alluminio totale* sono stati rilevati superamenti in tre campagne (prima, seconda e quarta, rispettivamente 3,5, 6,0 e 1,2) mentre nella terza campagna i valori delle stazioni di monte e di valle sono fuori scala.

Per il parametro *Azoto ammoniacale* si è rilevato un superamento nella terza campagna con un valore di Δ VIP pari a 2,0; nella campagna successiva non sono stati rilevati superamenti.

Per il parametro *Solfati* si è rilevato un superamento nella prima campagna con un valore di ΔVIP pari a 1,1; nelle campagne successive non sono stati rilevati superamenti.

Per il parametro *Tensioattivi non ionici* nella prima campagna il valore della stazione di valle risultava fuori scala e quindi non è stato possibile valutare il Δ VIP.

Infine per il parametro *Escherichia Coli* è stato rilevato un valore di ΔVIP pari a 2,27 nella seconda campagna; nelle campagne successive non è stato rilevato nessun superamento.

5.6 Fiume Tione dei monti

MONITORAGGIO AMBIENTALE LINEA FERROVIARIA AV/CA BRESCIA - VERONA - FASE A.O.							
Comparto	ACQUE SU	PERFICIALI					
Corso d'acqua oggetto di monitoraggio	Fiume Tion	e dei monti					
Codice stazione	AV-SO-SU-33	AV-SO-SU-34					
Posizione	Monte	Valle					
Provincia	Verona	Verona					
Comune	Sona	Sona					
Località	Molino	Roncana					
Coordinate GBO	X: 1638827.7	X: 1638589.3					
Coordinate GBO	Y: 5031989.4	Y: 5031436.9					

GENERAL CONTRACTOR Cepav due

	Progetto	Lotto	Coditica Documento	Rev.	Foglio
Doc. N.	INOR	11	EE2PEMB10B5001	Α	72 di 121

5.6.1 Monitoraggio parametri biologici

	Tabella Riassuntiva Stazioni Di Monitoraggio Parametri Biologici									
Stazione	AV-SO-SU-33 (Monte)	AV-SO-SU-34 (Valle)								
Denominazione	Fiume Tion	e dei monti								
Foto										

Tab. 5.74 Caratterizzazione delle stazioni biologiche del Fiume Tione dei monti

Il Fiume Tione dei monti è un corso d'acqua naturaliforme, privo di manufatti artificiali, l'ambiente circostante entrambe le stazioni è costituito da urbanizzazione rada e colture stagionali. Il substrato di entrambe le stazioni è medio-fine, composto prevalentemente di ghiaia. La vegetazione riparia di entrambe le stazioni è di tipo erbaceo continuo sia in destra che in sinistra idrografica. Di seguito si riportano i risultati delle analisi biologiche effettuate nel corso dell'anno 2018, per maggiori dettagli si rimanda ai certificati allegati.

RISULTATI QUALITÀ BIOLOGICA – INDICE I.B.E.										
AV-SO-SU-33 (Monte)	I CAMPAGNA GENNAIO 2018	II CAMPAGNA APRILE 2018	III CAMPAGNA LUGLIO 2018	IV CAMPAGNA OTTOBRE 2018						
Totale U. S.	12	12	17	4						
Valore IBE	7	6	8	2						
Classe di qualità	III	III	II	V						
Giudizio di qualità	Ambiente alterato	Ambiente alterato	Ambiente con moderati sintomi di alterazione	Ambiente fortemente degradato						

Tab. 5.75 Risultati qualità biologica, indice IBE - Fase AO - 2018 - stazione AV-SO-SU-33 (Monte)

La stazione di monte del Fiume Tione dei monti presenta una III classe IBE nelle prime due campagne di monitoraggio, nella terza campagna si classifica con una II classe, nella quarta campagna registra il dato peggiore, pari ad una quinta classe IBE.

	RISULTATI QUALITÀ BIOLOGICA – INDICE I.B.E.										
AV-SO-SU-34 (Valle)	I CAMPAGNA GENNAIO 2018	II CAMPAGNA APRILE 2018	III CAMPAGNA LUGLIO 2018	IV CAMPAGNA OTTOBRE 2018							
Totale U. S.	10	12	15	3							
Valore IBE	5-6	6	7-8	2							
Classe di qualità	IV-III	Ш	III-II	V							
Giudizio di qualità	Ambiente sensibilmente alterato	Ambiente alterato	Ambiente quasi alterato	Ambiente fortemente degradato							

Tab. 5.76 Risultati qualità biologica, indice IBE – Fase AO – 2018 – stazione AV-SO-SU-34 (Valle)

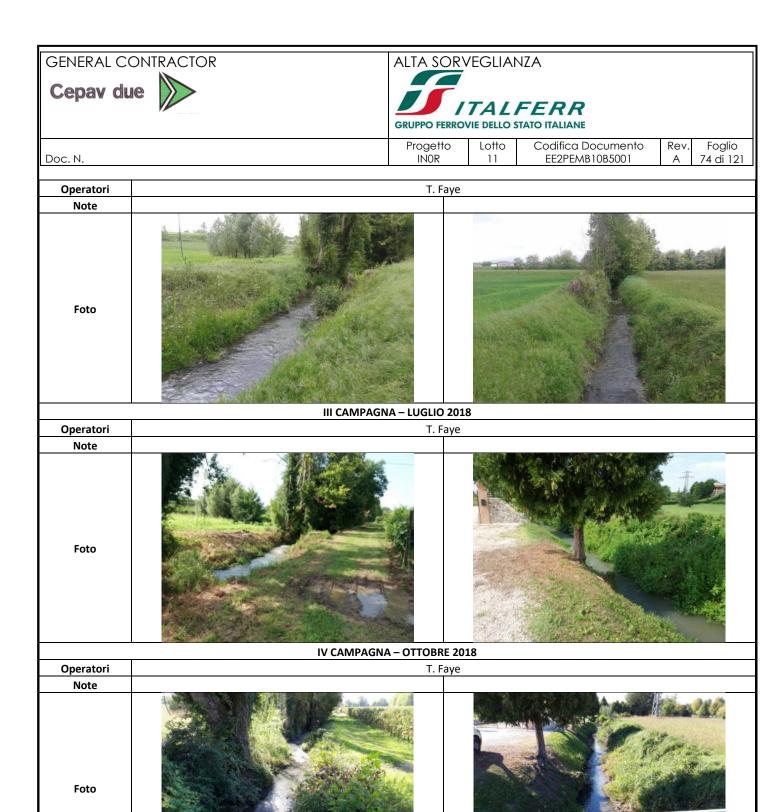
La stazione di valle del Fiume Tione dei monti oscilla tra una III-II ed una V classe di qualità IBE, il giudizio migliore si registra nella campagna di Luglio 2018, quello peggiore nella campagna di Ottobre 2018.

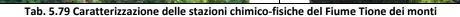
	RISULTATI QUALITÀ BIOLOGICA – INDICE ICMI								
AV-SO-SU-33 (Monte)	I CAMPAGNA GENNAIO 2018	II CAMPAGNA APRILE 2018	III CAMPAGNA LUGLIO 2018	IV CAMPAGNA OTTOBRE 2018					
N° specie	-	43	-	41					
ICMi	ICMi -		·	0,51					
Classe di qualità	-	Buono	=	Scarso					

Tab. 5.77 Risultati dell'indice ICMi per la stazione AV-SO-SU-33 (Monte), fase AO - 2018

L'indice ICMi nella stazione di monte del Fiume Tione dei monti riporta un giudizio buono nella campagna di aprile 2018 e uno scarso nella campagna di ottobre 2018.

	RISULTATI QUALITÀ BIOLOGICA – INDICE ICMI								
AV-SO-SU-34 (Valle)	I CAMPAGNA GENNAIO 2018	II CAMPAGNA APRILE 2018	III CAMPAGNA LUGLIO 2018	IV CAMPAGNA OTTOBRE 2018					
N° specie	-	36	-	42					
ICMi	ICMi -		=	0,64					
Classe di qualità	=	Buono	=	Sufficiente					


Tab. 5.78 Risultati dell'indice ICMi per la stazione AV-SO-SU-34 (Valle), fase AO - 2018


Nella stazione di valle del Fiume Tione dei monti l'indice ICMi risulta avere un giudizio buono nella campagna di aprile 2018 e sufficiente nella campagna di ottobre 2018.

5.6.2 Monitoraggio parametri chimico-fisici e microbiologici

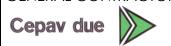

Di seguito si riportano i risultati delle analisi chimico-fisiche e microbiologiche nel corso dell'anno 2018, per maggiori dettagli si rimanda ai certificati allegati.

	TABELLA RIASSUNTIVA STAZIONI DI MONITORAGGIO PARA	AMETRI CHIMICO-FISICI E BIOLOGICI						
Stazione	AV-SO-SU-33 (Monte)	AV-SO-SU-34 (Valle)						
Denominazione	Fiume Tione dei monti							
	I CAMPAGNA – GENNAIC	O 2018						
Operatori	peratori T. Faye							
Note								
Foto								
	II CAMPAGNA – MAGGIO	2010						

RISULTATI QUALITÀ CHIMICO-FISICA E MICROBIOLOGICA									
Parametri	UdM	I CAMPAGNA GENNAIO 2018		II CAMPAGNA MAGGIO 2018		III CAMPAGNA LUGLIO 2018		IV CAMPAGNA OTTOBRE 2018	
		Monte	Valle	Monte	Valle	Monte	Valle	Monte	Valle
Temperatura	°C	5,2	5,7	15,1	15,4	18,8	18,1	11,8	12
рН	-	7,6	7,9	7,8	8,0	7,9	7,8	8,0	8,0
Conducibilità elettrica specifica	μS/cm a 20°C	741	744	747	704	494	370	805	798

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 EE2PEMB10B5001 A 75 di 121

RISULTATI QUALITÀ CHIMICO-FISICA E MICROBIOLOGICA I CAMPAGNA II CAMPAGNA III CAMPAGNA IV CAMPAGNA										
Barra mandad										
Parametri	UdM				O 2018		2018		OTTOBRE 2018	
Data matala Da da c	.,	Monte	Valle	Monte	Valle	Monte	Valle	Monte	Valle	
Potenziale Redox	mV	70	50	59	51	169	139	-50	-5	
Ossigeno disciolto (O ₂)	mg/l	10,55	11,17	7,05	8,06	5,25	5,64	6,02	4,6	
Ossigeno disciolto (O ₂)	% di sat.	83	88,9	71,7	82,4	57,1	60,4	55,8	43	
Solidi sospesi totali (SST)	mg/l	5	5	15	20	39	49	8	9	
COD (O2)	mg/l	12	13	13	13	21	14	28	15	
BOD5 (O2)	mg/l	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	
TOC	mg/l	3,7	3,8	4,4	4,4	3,2	2,9	5,5	5,3	
DOC	mg/l	3,7	3,7	4	3,8	2,4	2,3	3,8	4,8	
Durezza	°F	37,9	37,7	35,2	35,7	24,4	18,9	38	37,4	
Alluminio (Al)	mg/l	< 20	< 20	< 20	< 20	24	30	< 20	< 20	
Alluminio totale (Al)	mg/l	30	44	90	85	383	491	47	38	
Arsenico (As)	mg/l	1	1	2	2	2	2	2	2	
Cadmio (Cd)	mg/l	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
Calcio (Ca)	mg/l	125,2	132,8	105,3	104,4	69	52,9	115,7	113,4	
Cromo esavalente (Cr)	mg/l	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
Cromo totale (Cr)	mg/l	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	
Ferro (Fe)	mg/l	263	137	45	40	24	< 20	57	61	
Ferro totale (Fe)	mg/l	184	101	183	161	485	587	115	106	
Magnesio (Mg)	mg/l	23,2	25	21	21,3	13,5	11,3	25,3	24,9	
Manganese (Mn)	mg/l	40	35	28	21	10	7	20	27	
Mercurio (Hg)	mg/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Nichel (Ni)	mg/l	2	2	< 2	< 2	< 2	< 2	2	2	
Piombo (Pb)	mg/l	<1	< 1	<1	<1	<1	<1	<1	< 1	
Potassio (K)	mg/l	10,8 < 10	11,2 < 10	8,8 < 10	8,3 < 10	4,8 < 10	3,8 < 10	21,6 < 10	20,1	
Rame (Cu) Silicio (Si)	mg/l								< 10 6	
Sodio (Na)	mg/l	7,9 38,4	8,5 40,6	5,9 31,5	6,1	3,8	3,2 9,9	6,1 50,9	47,9	
Zinco (Zn)	mg/l	16	< 10	< 10	29,5 < 10	17,1 < 10	< 10	< 10	< 10	
Fosforo totale (P)	mg/l mg/l	0,482	0,42	0,348	0,319	0,161	0,097	0,42	0,402	
Ortofosfato (PO ₄)	mg/l	1,1	1,1	0,346	0,319	< 0.2	< 0.2	< 0.2	< 0.2	
Azoto ammoniacale (N)	mg/l	0,51	0,54	0,3	0,39	0,1	0,06	< 0.2	< 0.2	
Azoto arrimornacaie (N)	mg/l	3	3,1	2,7	2,9	2,5	1,6	3	2,3	
Azoto nitroso (N)		 < 6	< 6	202	190	96	51	44	282	
Azoto totale (N)	mg/l mg/l	4,6	4,6	4,1	4,1	2,9	1,9	4,4	3,1	
Cloruri (Cl)	mg/l	66	58	55	53	30	1,9	4,4	44	
Solfati (SO ₄)	mg/l	58	59	48	51	39	37	74	73	
Idrocarburi leggeri C<12	mg/l	< 30	< 30	< 30	< 30	< 30	< 30	< 30	< 30	
Idrocarburi pesanti C>12		< 30	< 30	< 30	< 30	< 30	< 30	< 30	< 30	
Idrocarburi totali (espressi	mg/l	\ 30	\ 3U	\ 30	\ 3U	\ 30	\ 30	\ 3U	\ 3U	
come n-esano) - somma	mg/l	< 30	< 30	< 30	< 30	< 30	< 30	< 30	< 30	
TENSIOATTIVI	m ~ /1	0.07	Z 0 0F	Z 0 0F	Z 0 0F	2 O OF	Z 0 0F	0.15	0.13	
Tensioattivi non ionici (MBAS)	mg/l	0,07	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0,15	0,13	
Tensioattivi non ionici (TAS)	mg/l	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
COMPOSTI ORG. AROMATICI		404	101	101	10.1	404	101	101	.01	
Benzene	mg/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Toluene	mg/l	<1	< 1	< 1	<1	<1	< 1	3	< 1	
orto-Xilene	mg/l	< 1	< 1	< 1	<1	< 1	< 1	< 1	< 1	
meta-Xilene	mg/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 EE2PEMB10B5001 A 76 di 121

		RISULTA	TI QUALITÀ CH	IMICO-FISICA E	Microbiologi	CA			
Parametri	UdM	I CAMPAGNA dM GENNAIO 2018		II CAM MAGGI	PAGNA O 2018	III CAM LUGLIO	PAGNA D 2018	IV CAM OTTOBI	PAGNA RE 2018
		Monte	Valle	Monte	Valle	Monte	Valle	Monte	Valle
COMPOSTI ORG. ALOGENATI									
Carbonio tetracloruro	mg/l	< 0.01	< 0.01	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2-clorotoluene	mg/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
3-clorotoluene	mg/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
4-clorotoluene	mg/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,2-dicloroetano	mg/l	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Diclorometano	mg/l	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15
Esaclorobutadiene	mg/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Tetracloroetilene	mg/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
1,1,1-tricloroetano	mg/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Tricloroetilene	mg/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Triclorometano	mg/l	0,01	0,01	< 0.01	< 0.01	< 0.01	< 0.01	0,05	0,04
CLOROBENZENI									
Monoclorobenzene	mg/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,2-diclorobenzene	mg/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,3-diclorobenzene	mg/l	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,4-diclorobenzene	mg/l	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,2,3-triclorobenzene	mg/l	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
1,2,4-triclorobenzene	mg/l	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
1,3,5-triclorobenzene	mg/l	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Esaclorobenzene	mg/l	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Conta Escherichia coli	UFC/100 ml	2500	2100	5200	5500	3900	2300	20000	6000

Tab. 5.80 Esito analisi chimico-fisiche

In tutti i monitoraggi effettuati non sono stati rilevati superamenti delle concentrazioni soglia di contaminazione (CSC).

	RISULTATI MISURA DI PORTATA								
PARAMETRO	UNITA' DI	STAZIONE	I CAMPAGNA	II CAMPAGNA	III CAMPAGNA	IV CAMPAGNA			
	MISURA	STALIGHE	GENNAIO 2018	APRILE 2018	LUGLIO 2018	OTTOBRE 2018			
Doutete	m³/s	AV-SO-SU-33	0,05	0,14	0,26	0,05			
Portata	111975	AV-SO-SU-34	0,06	0,17	0,25	0,05			

Tab. 5.81 Risultati delle misure di portata del Fiume Tione dei monti, fase AO - 2018

I valori di portata del Fiume Tione dei monti risultano analoghi tra le due stazioni, le portate più elevate si sono registrate nella campagna di Luglio 2018, con 0,26 m³/s misurati a monte e 0,25 m³/s a valle.

5.6.3 Monitoraggio della funzionalità fluviale I.F.F.

In data 01/08/2018 è stata effettuata una campagna di indagine in cui è stato monitorato il livello di funzionalità fluviale del fiume Tione dei Monti nel tratto che va da 50 m a valle della stazione di valle (AV-SO-SU-34) a 50 m a monte della stazione di monte (AV-SO-SU-33) per una lunghezza totale di 706 m. La valutazione secondo la metodica I.F.F. ha permesso di suddividere la porzione fluviale di indagine in 9 tratti omogenei.

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. 11 EE2PEMB10B5001 A 77 di 121

Nello specifico, nelle tabelle successive, si riportano i risultati ottenuti nei singoli tratti.

RISULTATI PER TRATTO - INDICE I.F.F.								
		Tratto	2					
Lunghezza del tratto (m): 120 Larghezza	120 Larghezza alveo morbida (m): 2 Lunghezza del			m): 81 Larghezza alveo morbida (m): 2			
Sponda	DX	SX	Sponda		DX		SX	
Valore di I.F.F.	84	84	Valore di I.F.F.	103		103		
Livello di funzionalità	IV	IV	Livello di funzionalità	Ш	IV	III	IV	
Giudizio di funzionalità	scadente	scadente	Giudizio di funzionalità	mediocre-scadente		mediocre-scadente		

Tab. 5.82 Risultati dell'applicazione dell'Indice di Funzionalità Fluviale sul Fiume Tione dei Monti – Agosto 2018

RISULTATI PER TRATTO - INDICE I.F.F.									
Tratto 3				Tratto 4					
Lunghezza del tratto (n	l tratto (m): 90 Larghezza alveo morbida (m): 2 Lunghezza del tratto (m): 5				n): 51	51 Larghezza alveo morbida (m): 3			
Sponda		DX	S	Х	Sponda	0	X	SX	
Valore di I.F.F.	1	109	1:	13	Valore di I.F.F.	54		54	
Livello di funzionalità	Ш	IV	III	IV	Livello di funzionalità	IV	V	IV	V
Giudizio di funzionalità	mediocr	e-scadente	mediocre	-scadente	Giudizio di funzionalità	scadente-pessimo		scadente-pessimo	

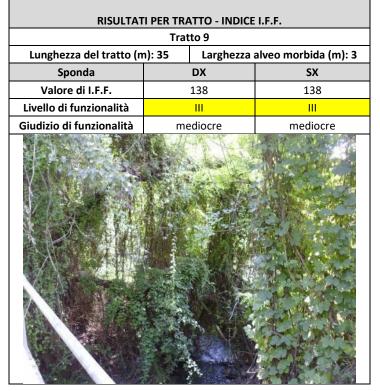
Tab. 5.83 Risultati dell'applicazione dell'Indice di Funzionalità Fluviale sul Fiume Tione dei Monti – Agosto 2018

GENERAL CONTRACTOR Cepav due

Progetto Lotto Codifica Documento Foglio Doc. N. INOR EE2PEMB10B5001 78 di 121 11

RISULTATI PER TRATTO - INDICE I.F.F.								
	Tratto 6							
Lunghezza del tratto (m	ı): 115 Larghezza	alveo morbida (m): 4	Lunghezza del tratto (m): 104 Larghezza alveo moi		lveo morbida (m): 3			
Sponda	DX	SX	Sponda	D	Х	SX		
Valore di I.F.F.	138	134	Valore di I.F.F.	12	28	132		
Livello di funzionalità	III	III	Livello di funzionalità	III		Ш		
Giudizio di funzionalità	mediocre	mediocre	Giudizio di funzionalità	medi	ocre	mediocre		

Tab. 5.84 Risultati dell'applicazione dell'Indice di Funzionalità Fluviale sul Fiume Tione dei Monti – Agosto 2018


RISULTATI PER TRATTO - INDICE I.F.F.								
	Tratto 8							
Lunghezza del tratto (n	Lunghezza del tratto (m): 55 Larghezza alveo morbida (m): 3		Lunghezza del tratto (m): 55 Larghezza			alveo morbida (m): 3		
Sponda	DX	SX	Sponda	D	Х	SX		
Valore di I.F.F.	124	128	Valore di I.F.F.	12	24	124		
Livello di funzionalità	III	III	Livello di funzionalità	III		III		
Giudizio di funzionalità	mediocre	mediocre	Giudizio di funzionalità	medi	iocre	mediocre		

Tab. 5.85 Risultati dell'applicazione dell'Indice di Funzionalità Fluviale sul Fiume Tione dei Monti – Agosto 2018

Tab. 5.86 Risultati dell'applicazione dell'Indice di Funzionalità Fluviale sul Fiume Tione dei Monti – Agosto 2018

Il Fiume Tione dei Monti presenta in prevalenza una situazione mediocre (livello di funzionalità III) sia sulla sponda destra che sulla sinistra, nel 51,5% del tratto di indagine.

Tab. 5.87 Mappa dei risultati dell'applicazione dell'I.F.F. sul Fiume Tione dei Monti – Agosto 2018

5.6.4 Confronto dei risultati tra le stazioni di monte e valle

Si riporta di seguito la tabella dove si raffrontano i dati relativi alle stazioni di MONTE e di VALLE mediante il calcolo del valore dei Δ VIP.

	Qualità Biologica Fiume Tione dei monti									
Parametri	AV-SO-SU-33 (Monte)	AV-SO-SU-34 (Valle)	ΔVΙΡ							
Parametri	Classe	Classe								
	I CAMPAGNA AO - 2018									
IBE	Ш	IV-III	< 1							
ICMi	-	-	-							
II CAMPAGNA AO - 2018										
IBE	Ш	Ш	0							
ICMi	=	H .	0							
	III CAMPAGNA AC	0 - 2018								
IBE	II .	III-II	< 1							
ICMi	-	-	-							
	IV CAMPAGNA AC	D - 2018								
IBE	V	V	0							
ICMi	IV	Ш	< 1							

Tab. 5.88 Calcolo ΔVIP tra le stazioni di monte e valle della qualità biologica del Fiume Tione dei monti – fase AO - 2018

	QUALITÀ CHIMICO-FISICA E MICROBIOLOGICA FIUME TIONE DEI MONTI											
Parametri	I CAMPAGNA GENNAIO 2018				II CAMPAGNA MAGGIO 2018		III CAMPAGNA LUGLIO 2018		IV CAMPAGNA OTTOBRE 2018			
	Monte	Valle	∆VIP	Monte	Valle	∆VIP	Monte	Valle	∆VIP	Monte	Valle	ΔVIP
рН	7,6	7,9	-0,3	7,8	8,0	-0,2	7,9	7,8	0,1	8,0	8,0	0,0
Conducibilità	5,28	5,27	0,0	5,26	5,39	-0,1	6,06	7,30	-1,2	5,09	5,11	0,0
OD (% sat.)	8,30	8,89	-0,6	8,99	9,23	-0,2	4,71	5,04	-0,3	4,58	3,44	1,1
SST	10,00	10,00	0,0	9,00	8,50	0,5	7,20	6,63	0,6	9,70	9,60	0,1
COD	10,00	10,00	0,0	10,00	10,00	0,0	10,00	10,00	0,0	10,00	10,00	0,0
TOC	10,00	10,00	0,0	10,00	10,00	0,0	10,00	10,00	0,0	10,00	10,00	0,0
Alluminio totale	10,00	10,00	0,0	10,00	10,00	0,0	10,00	10,00	0,0	10,00	10,00	0,0
Cromo totale	10,00	10,00	0,0	10,00	10,00	0,0	10,00	10,00	0,0	10,00	10,00	0,0
Azoto ammoniacale	10,00	10,00	0,0	10,00	10,00	0,0	10,00	10,00	0,0	10,00	10,00	0,0
Cloruri	10,00	10,00	0,0	10,00	10,00	0,0	10,00	10,00	0,0	10,00	10,00	0,0
Solfati	10,00	10,00	0,0	10,00	10,00	0,0	10,00	10,00	0,0	10,00	10,00	0,0
Idrocarburi totali	10,00	10,00	0,0	10,00	10,00	0,0	10,00	10,00	0,0	10,00	10,00	0,0
Tensioattivi anionici	10,00	10,00	0,0	10,00	10,00	0,0	10,00	10,00	0,0	10,00	10,00	0,0
Tensioattivi non ionici	10,00	10,00	0,0	10,00	10,00	0,0	10,00	10,00	0,0	10,00	10,00	0,0
Conta Escherichia coli	10,00	10,00	0,0	10,00	10,00	0,0	10,00	10,00	0,0	10,00	10,00	0,0

Tab. 5.89 Calcolo ΔVIP tra le stazioni di monte e valle della qualità chimica e biologica del Fiume Tione dei Monti – fase AO - 2018

Parametri biologici

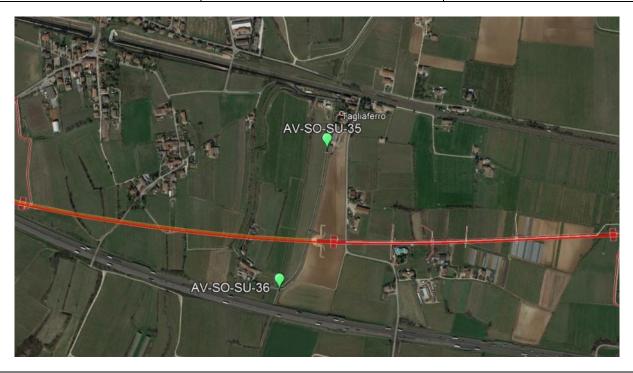
Per quanto riguarda la comunità di macroinvertebrati e la comunità diatomica, essendo il parametro calcolato già sotto forma di indice, non viene effettuata la normalizzazione in VIP, ma si procede al calcolo della soglia valutando la differenza di classe tra monte e valle.

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 EE2PEMB10B5001 A 81 di 121

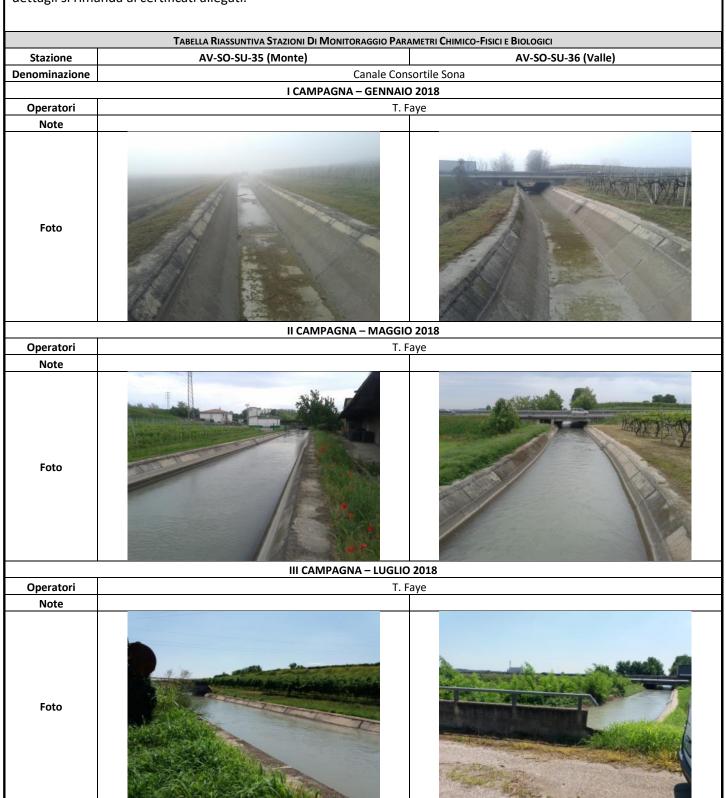
Il Δ VIP calcolato per l'indice IBE è sempre 0 o < 1 evidenziando una sostanziale omogeneità tra la stazione di monte e quella di valle.

Entrambe le stazioni nella II campagna di monitoraggio presentano un giudizio ICMi buono determinando un Δ VIP pari a 0, nella IV campagna la stazione di valle migliora di una classe rispetto alla stazione di monte, il Δ VIP è < 1.

Parametri chimico-fisici e microbiologici


Le analisi chimico-fisiche e microbiologiche mostrano il buono stato chimico-fisico delle acque della roggia. I VIP calcolati sono generalmente medio-alti, indice di una qualità ottimale.

Dal calcolo dei Δ VIP è stato riscontrato un solo superamento della soglia di attenzione; per il parametro *Ossigeno disciolto* nella quarta campagna di monitoraggio è stato rilevato un Δ VIP pari a 1,1. Tale superamento verrà monitorato con la prima campagna di corso d'opera.


5.7 Canale consortile Sona

MONITORAGGIO AMBIE	MONITORAGGIO AMBIENTALE LINEA FERROVIARIA AV/CA BRESCIA - VERONA - FASE A.O.							
	SU-1: Indagini per campagne periodiche							
Comparto	ACQUE SU	PERFICIALI						
Corso d'acqua oggetto di monitoraggio	li monitoraggio Canale consortile Sona							
Codice stazione	AV-SO-SU-35	AV-SO-SU-36						
Posizione	Monte	Valle						
Provincia	Verona	Verona						
Comune	Sona	Sona						
Località	Tagliaferro	Casin						
Coordinate GBO	X: 1640549.5	X: 1640411.3						
Coordinate GBO	Y: 5031471.7	Y: 5031039.8						

Di seguito si riportano i risultati delle analisi chimico-fisiche e microbiologiche nel corso dell'anno 2018, per maggiori dettagli si rimanda ai certificati allegati.

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 EE2PEMB10B5001 A 84 di 121

IV CAMPAGNA – (OTTOBRE 2018
-----------------	---------------------

Operatori T. Faye

Note

Foto

Tab. 5.90 Caratterizzazione delle stazioni chimico-fisiche del Canale Consortile Sona

	RISULTATI QUALITÀ CHIMICO-FISICA E MICROBIOLOGICA								
Dougraphyi	11454	I CAMP	_	_	PAGNA		PAGNA	IV CAM	
Parametri	UdM	GENNAI Monte	Valle	Monte	Valle	Monte	O 2018 Valle	Monte	RE 2018 Valle
Temperatura	°C	-	valle	9,8	9,9	17,4	17,3	10,2	13,8
рН	-		-	7,7	7,8	7,9	7,9	8,5	9,0
Conducibilità elettrica specifica	μS/cm a 20°C	-	-	186	186	233	233	210	244
Potenziale Redox	mV	-	-	123	124	159	158	57	39
Ossigeno disciolto (O ₂)	mg/l	-	-	10,37	10,26	6,34	6,27	8,18	7,99
Ossigeno disciolto (O ₂)	% di sat.	-	-	93,9	93	66,9	66,4	73,4	77,7
Solidi sospesi totali (SST)	mg/l	-	-	47	50	89	94	12	12
COD (O2)	mg/l	-	-	6	< 5	< 5	6	60	110
BOD5 (O2)	mg/l	-	-	< 5	< 5	< 5	< 5	30	53
TOC	mg/l	-	-	1,2	1,4	3,5	3	17,9	43
DOC	mg/l	-	-	1,2	1,1	1,1	1,4	17	39,9
Durezza	°F	-	-	9,6	9,7	11,8	11,8	10,7	12,5
Alluminio (Al)	mg/l	-	-	25	21	42	39	29	23
Alluminio totale (Al)	mg/l	-	-	307	299	546	568	62	54
Arsenico (As)	mg/l	-	-	2	2	2	2	17	23
Cadmio (Cd)	mg/l	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Calcio (Ca)	mg/l	-	-	27,2	27,3	32,4	32,2	30,6	37,9
Cromo esavalente (Cr)	mg/l	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Cromo totale (Cr)	mg/l	-	-	< 5	< 5	< 5	< 5	< 5	< 5
Ferro (Fe)	mg/l	-	-	25	21	34	26	31	36
Ferro totale (Fe)	mg/l	-	-	301	274	621	692	64	73
Magnesio (Mg)	mg/l	-	-	7,3	7,4	10,9	10,8	8,2	7
Manganese (Mn)	mg/l	-	-	< 5	< 5	< 5	< 5	9	22
Mercurio (Hg)	mg/l	-	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Nichel (Ni)	mg/l	-	-	< 2	< 2	< 2	< 2	10	21
Piombo (Pb)	mg/l	-	-	< 1	< 1	< 1	< 1	< 1	< 1
Potassio (K)	mg/l	-	-	1,5	1,7	2,6	2,5	3,2	2,5
Rame (Cu)	mg/l	-	-	< 10	< 10	< 10	< 10	12	21
Silicio (Si)	mg/l	-	-	2,7	2,7	2	2	0,3	0,5
Sodio (Na)	mg/l	-	-	3,8	3,6	4,2	4,2	7,1	9,5
Zinco (Zn)	mg/l	-	-	< 10	< 10	< 10	< 10	< 10	< 10

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 EE2PEMB10B5001 A 85 di 121

		I CAMP	AGNA	II CAM	II CAMPAGNA III CA			IV CAM	PAGNA
Parametri	UdM	GENNAIO 2018		MAGGIO 2018		LUGLIO 2018		OTTOBRE 2018	
		Monte	Valle	Monte	Valle	Monte	Valle	Monte	Valle
Fosforo totale (P)	mg/l	-	-	< 0.020	< 0.020	< 0.020	< 0.020	0,155	0,183
Ortofosfato (PO ₄)	mg/l	-	-	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Azoto ammoniacale (N)	mg/l	-	-	0,05	0,05	0,08	0,08	0,06	0,07
Azoto nitrico (N)	mg/l	-	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Azoto nitroso (N)	mg/l	-	-	14	22	18	20	< 6	< 6
Azoto totale (N)	mg/l	_	-	< 1.0	1,1	< 1.0	< 1.0	1,9	4
Cloruri (Cl)	mg/l	_	-	4	4	5	5	8	10
Solfati (SO ₄)	mg/l	-	-	24	24	35	35	45	59
Idrocarburi leggeri C<12	mg/l	-	-	< 30	< 30	< 30	< 30	< 30	< 30
Idrocarburi pesanti C>12	mg/l	_	_	< 30	< 30	< 30	< 30	< 30	< 30
Idrocarburi totali (espressi	1118/1			\ 30	\ 30	\ 30	\ 30	\ 30	\ 30
come n-esano) - somma	mg/l	-	-	< 30	< 30	< 30	< 30	< 30	< 30
TENSIOATTIVI		-	-						
Tensioattivi anionici (MBAS)	mg/l	-	-	< 0.05	< 0.05	< 0.05	0,12	0,29	0,12
Tensioattivi non ionici (TAS)	mg/l		_	< 0.05	< 0.05	< 0.05	< 0.05	0,18	0,12
COMPOSTI ORG. AROMATICI	1116/1	-	-	\ 0.03	\ 0.03	\ 0.03	\ 0.03	0,10	0,20
Benzene	/1			< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	mg/l	-	-	+					
Toluene	mg/l	-	-	< 1	<1	<1	<1	< 1	< 1
orto-Xilene	mg/l	-	-	<1	<1	<1	<1	<1	< 1
meta-Xilene	mg/l	-	-	<1	<1	< 1	< 1	< 1	< 1
para-Xilene	mg/l	-	-	< 1	<1	<1	< 1	< 1	< 1
COMPOSTI ORG. ALOGENATI	,,	-	-						
Carbonio tetracloruro	mg/l	-	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.3
2-clorotoluene	mg/l	-	-	< 1	< 1	< 1	< 1	< 1	< 1
3-clorotoluene	mg/l	-	-	< 1	<1	< 1	< 1	< 1	< 1
4-clorotoluene	mg/l	-	-	<1	<1	< 1	< 1	<1	< 1
1,2-dicloroetano	mg/l	-	-	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Diclorometano	mg/l	-	-	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.1
Esaclorobutadiene	mg/l	-	-	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.0
Tetracloroetilene	mg/l	-	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
1,1,1-tricloroetano	mg/l	-	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Tricloroetilene	mg/l	-	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2
Triclorometano	mg/l	-	-	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.0
CLOROBENZENI		-	-						
Monoclorobenzene	mg/l	-	-	< 1	< 1	< 1	< 1	< 1	< 1
1,2-diclorobenzene	mg/l	-	-	< 1	< 1	< 1	< 1	< 1	< 1
1,3-diclorobenzene	mg/l	-	-	< 1	< 1	< 1	< 1	< 1	< 1
1,4-diclorobenzene	mg/l	-	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.0
1,2,3-triclorobenzene	mg/l	-	-	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
1,2,4-triclorobenzene	mg/l	-	-	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
1,3,5-triclorobenzene	mg/l	-	-	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Esaclorobenzene	mg/l	-	-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.0
Conta Escherichia coli	UFC/100	-	-	660	620	1600	1500	10	< 1

Tab. 5.91 Esito analisi chimico-fisiche

In tutti i monitoraggi effettuati non sono stati rilevati superamenti delle concentrazioni soglia di contaminazione (CSC).

	Progetto	Lotto	Codifica Documento	Rev.	Foglio
Doc. N.	INOR	11	EE2PEMB10B5001	Α	86 di 121

RISULTATI MISURA DI PORTATA							
PARAMETRO UNITA' DI STAZIONE I CAMPAGNA II CAMPAGNA III CAMPAGNA IV CAMPAGNA GENNAIO 2018 APRILE 2018 LUGLIO 2018 OTTOBRE 2018							
Doutete	m3/c	AV-SO-SU-35	alveo in asciutta	*	*	alveo in asciutta	
Portata	m³/s	AV-SO-SU-36	alveo in asciutta	*	*	alveo in asciutta	

Tab. 5.92 Risultati delle misure di portata del Canale consortile Sona, fase AO - 2018

Il Canale consortile Sona nella prima e nell'ultima campagna d'indagine del 2018 si presentava in asciutta. Nelle campagne di aprile e di luglio 2018 non è stato possibile eseguire le misure di portata in condizioni di sicurezza.

5.7.2 Confronto dei risultati tra le stazioni di monte e valle

Si riporta di seguito la tabella dove si raffrontano i dati relativi alle stazioni di MONTE e di VALLE mediante il calcolo del valore dei Δ VIP.

		Q	ualità Chii	MICO-FISICA	E MICROBIO	LOGICA C AN	ALE CONSORT	ILE SONA				
	I CAMPAGNA		II	II CAMPAGNA		III CAMPAGNA			IV CAMPAGNA			
Parametri	GEI	NNAIO 20	18	M	AGGIO 20	18	L	JGLIO 201	8	OTTOBRE 2018		
	Monte	Valle	∆VIP	Monte	Valle	∆VIP	Monte	Valle	ΔVIP	Monte	Valle	ΔVIP
рН	-	-	-	7,7	7,8	-0,1	7,9	7,9	0,0	8,5	9,0	-0,5
Conducibilità	-	-	-	9,52	9,52	0,0	8,89	8,89	0,0	9,20	8,75	0,5
OD (% sat.)	-	-	-	6,34	8,24	-1,9	3,28	3,36	-0,1	4,70	3,12	1,6
SST	-	-	-	6,74	6,57	0,2	3,55	3,30	0,3	9,30	9,30	0,0
											valore	
COD	-	-	-	9,60	10,00	-0,4	10,00	9,60	0,4	1,20	fuori	n.d.
											scala	
TOC	-	-	-	10,00	10,00	0,0	10,00	10,00	0,0	7,21	4,70	2,5
				valore	valore		valore	valore				
Alluminio totale	-	-	-	fuori	fuori	n.d.	fuori	fuori	n.d.	5,52	5,84	-0,3
				scala	scala		scala	scala				
Cromo totale	-	-	-	9,43	9,43	0,0	9,43	9,43	0,0	9,43	9,43	0,0
Azoto ammoniacale	-	-	-	9,43	9,43	0,0	8,57	8,57	0,0	9,14	8,86	0,3
Cloruri	-	-	-	9,00	9,00	0,0	8,00	8,00	0,0	7,40	7,00	0,4
Solfati	-	-	-	8,13	8,13	0,0	6,67	6,67	0,0	5,86	5,46	0,4
Idrocarburi totali	-	-	-	9,79	9,79	0,0	9,79	9,79	0,0	9,79	9,79	0,0
Tensioattivi anionici	-	-	-	10,00	10,00	0,0	10,00	9,07	0,9	6,80	9,07	-2,3
Tensioattivi non ionici	-	-	-	10,00	10,00	0,0	10,00	10,00	0,0	8,27	6,93	1,3
Conta Escherichia coli	-	-	-	8,38	8,42	-0,04	7,70	7,75	-0,05	9,90	9,99	-0,09

Tab. 5.93 Calcolo ΔVIP tra le stazioni di monte e valle della qualità chimica e biologica del Canale Consortile Sona – fase AO - 2018

<u>Parametri chimico-fisici e microbiologici</u>

Le analisi chimico-fisiche e microbiologiche mostrano il buono stato chimico-fisico delle acque della roggia. I VIP calcolati sono generalmente medio-alti, indice di una qualità ottimale.

Dal calcolo dei ΔVIP sono stati riscontrati alcuni superamenti della soglia di attenzione e/o intervento.

Per il parametro *Alluminio totale* nella seconda e nella terza campagna i valori delle stazioni di monte e di valle sono risultate fuori scala e pertanto non è possibile calcolare i valori VIP.

Nella quarta campagna di monitoraggio sono stati rilevati superi di Δ VIP per i parametri *Ossigeno disciolto* (Δ VIP = 1,6), *TOC* (Δ VIP = 2,5) e *Tensioattivi non ionici* (Δ VIP = 1,3) mentre per il parametro *COD* è stato rilevato un valore fuori scala per la stazione di valle; tali valori verrano valutati con la prima campagna di corso d'opera.

^{* =} misura non eseguibile in condizioni di sicurezza

5.8 Scolo Bulgarella

MONITORAGGIO AMBIENTALE LINEA FERROVIARIA AV/CA BRESCIA - VERONA - FASE A.O.						
Comparto ACQUE SUPERFICIALI						
Corso d'acqua oggetto di monitoraggio	Scolo Bulgarella					
Codice stazione	AV-SO-SU-37	AV-SO-SU-38				
Posizione	Monte	Valle				
Provincia	Verona	Verona				
Comune	Sona	Sona				
Località	Tagliaferro	Grolla				
Coordinate CRO	X: 1640817.0	X: 1640870.0				
Coordinate GBO	Y: 5031489.7	Y: 5031088.7				

5.8.1 Monitoraggio parametri biologici

	Tabella Riassuntiva Stazioni Di Monitorag	GIO PARAMETRI BIOLOGICI
Stazione	AV-SO-SU-37 (Monte)	AV-SO-SU-38 (Valle)
Denominazione	Scolo Bo	ulgarella
Foto		

Tab. 5.94 Caratterizzazione delle stazioni biologiche dello Scolo Bulgarella

Lo Scolo Bulgarella è un piccolo corso d'acqua privo di manufatti artificiali sulle sponde e sul fondo, il substrato della stazione di monte è prevalentemente ghiaioso, quello della stazione di valle è prevalentemente limoso. L'ambiente circostante la stazione di monte è costituito da vigneto e colture stagionali o urbanizzazione rada, la stazione di valle è circondata da abitazioni e vigneti. Entrambe le stazioni presentano ombreggiatura elevata.

Di seguito si riportano i risultati delle analisi biologiche effettuate nel corso dell'anno 2018, per maggiori dettagli si rimanda ai certificati allegati.

RISULTATI QUALITÀ BIOLOGICA – INDICE I.B.E.								
AV-SO-SU-37 (Monte)	I CAMPAGNA GENNAIO 2018	II CAMPAGNA APRILE 2018	III CAMPAGNA LUGLIO 2018	IV CAMPAGNA OTTOBRE 2018				
Totale U. S.	-	4	12	11				
Valore IBE	-	2	4	6-5				
Classe di qualità	-	V	IV	III-IV				
Giudizio di qualità	-	Ambiente fortemente degradato	Ambiente molto alterato	Ambiente sensibilmente alterato				

Tab. 5.95 Risultati qualità biologica, indice IBE – Fase AO – 2018 – stazione AV-SO-SU-37 (Monte)

Nella prima campagna di monitoraggio 2018 la stazione di monte dello Scolo Bulgarella si presentava in asciutta, nelle restanti campagne si sono registrati valori di IBE che determinano una V classe ad aprile, una IV classe a luglio ed una III-IV classe ad ottobre 2018.

RISULTATI QUALITÀ BIOLOGICA – INDICE I.B.E.							
AV-SO-SU-38 (Valle)	I CAMPAGNA GENNAIO 2018	II CAMPAGNA APRILE 2018	III CAMPAGNA LUGLIO 2018	IV CAMPAGNA OTTOBRE 2018			
Totale U. S.	=	1	10	9			
Valore IBE	-	1-2	3-4	5			
Classe di qualità	=	V	V-IV	IV			
Giudizio di qualità	-	Ambiente fortemente degradato	Ambiente notevolmente alterato	Ambiente molto alterato			

Tab. 5.96 Risultati qualità biologica, indice IBE – Fase AO – 2018 – stazione AV-SO-SU-38 (Valle)

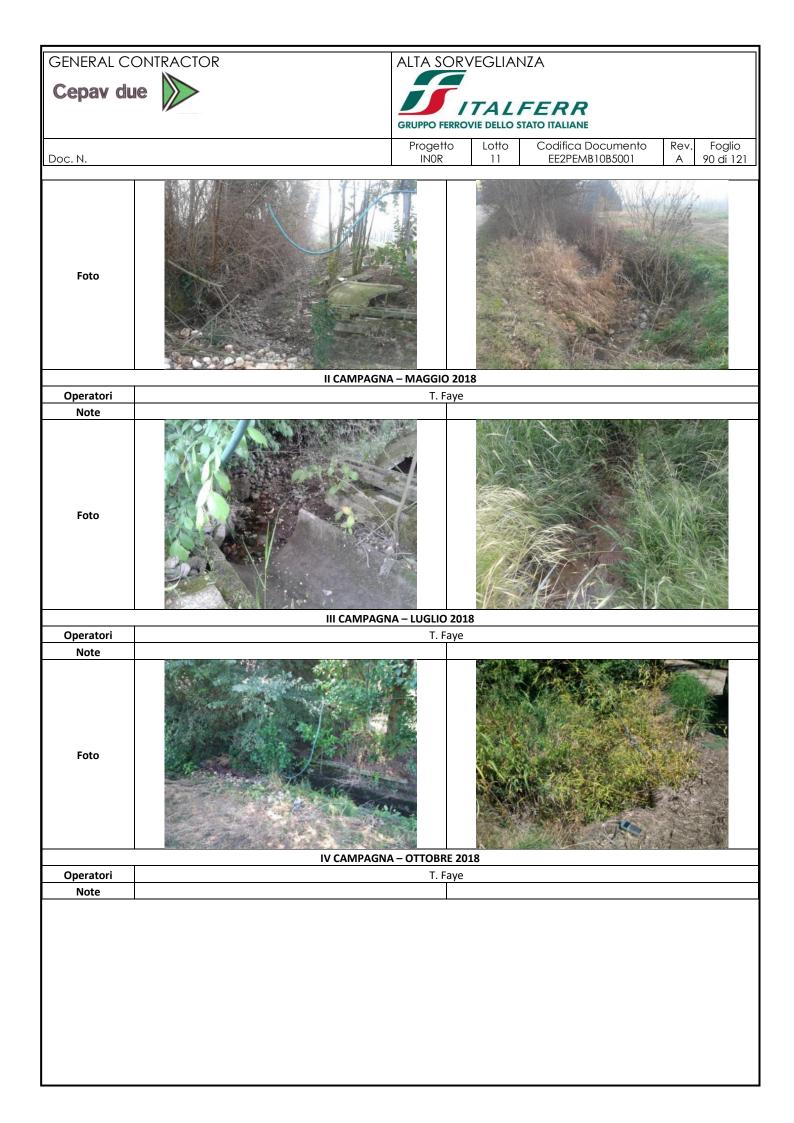
Anche la stazione di valle dello Scolo Bulgarella si presentava in asciutta nel corso della I campagna di monitoraggio 2018. Nelle restanti campagne si sono registrati valori di IBE che determinano una V classe ad aprile, una V-IV classe a luglio ed una IV classe ad ottobre 2018.

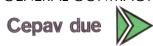
RISULTATI QUALITÀ BIOLOGICA – INDICE ICMI								
AV-SO-SU-37 (Monte) I CAMPAGNA GENNAIO 2018 II CAMPAGNA III CAMPAGNA III CAMPAGNA III CAMPAGNA OTTOBRE 2018 OTTOBRE 2018								
N° specie	ī	56	=	32				
ICMi	-	0,59	=	0,79				
Classe di qualità	-	Sufficiente	=	Buono				

Tab. 5.97 Risultati dell'indice ICMi per la stazione AV-SO-SU-37 (Monte), fase AO - 2018

L'indice ICMi nella stazione di monte dello Scolo Bulgarella riporta un giudizio sufficiente nella campagna di aprile 2018 e uno buono nella campagna di ottobre 2018.

RISULTATI QUALITÀ BIOLOGICA – INDICE ICMI								
AV-SO-SU-38 (Valle) I CAMPAGNA II CAMPAGNA III CAMPAGNA III CAMPAGNA IV CAMPAGNA OTTOBRE 2018 OTTOBRE 2018								
N° specie	-	49	-	14				
ICMi	=	0,57	-	0,82				
Classe di qualità	-	Sufficiente	=	Buono				


Tab. 5.98 Risultati dell'indice ICMi per la stazione AV-SO-SU-38 (Valle), fase AO - 2018


Nella stazione di valle dello Scolo Bulgarella l'indice ICMi risulta avere un giudizio sufficiente nella campagna di aprile 2018 e buono nella campagna di ottobre 2018.

5.8.2 Monitoraggio parametri chimico-fisici e microbiologici

Di seguito si riportano i risultati delle analisi chimico-fisiche e microbiologiche nel corso dell'anno 2018, per maggiori dettagli si rimanda ai certificati allegati.

Tabella Riassuntiva Stazioni Di Monitoraggio Parametri Chimico-Fisici e Biologici								
Stazione	Stazione AV-SO-SU-37 (Monte) AV-SO-SU-38 (Valle)							
Denominazione	Scolo Bulgarella							
	I CAMPAGNA – GENNAIO	2018						
Operatori	Т. F	aye						
Note								

Progetto Lotto Codifica Documento Rev. Foglio Doc. N. 11 EE2PEMB10B5001 A 91 di 121

Foto

Tab. 5.99 Caratterizzazione delle stazioni chimico-fisiche del Scolo Bulgarella

	RISULTATI QUALITÀ CHIMICO-FISICA E MICROBIOLOGICA									
		I CAMP	AGNA	II CAM	PAGNA	III CAM	PAGNA	IV CAM	PAGNA	
Parametri	UdM	GENNAI	O 2018	MAGGI	O 2018	LUGLI	0 2018	ОТТОВІ	RE 2018	
		Monte	Valle	Monte	Valle	Monte	Valle	Monte	Valle	
Temperatura	°C	-	-	-	-	17,2	18	11,9	9,4	
рН	-	-	-	-	-	7,6	7,7	8,1	7,6	
Conducibilità elettrica	μS/cm a	_		_	_	F 70	F70	F02	649	
specifica	20°C	-	-	-	-	578	570	583	648	
Potenziale Redox	mV	-	-	-	-	159	159	48	24	
Ossigeno disciolto (O ₂)	mg/l	-	-	-	-	4,99	5,29	7,01	3,74	
Ossigeno disciolto (O ₂)	% di sat.	-	-	-	-	52,5	56,2	65,6	32,9	
Solidi sospesi totali (SST)	mg/l	-	-	-	-	7	< 5	5	7	
COD (O2)	mg/l	-	-	-	-	8	< 5	< 5	19	
BOD5 (O2)	mg/l	-	-	-	-	< 5	< 5	< 5	< 5	
TOC	mg/l	-	-	-	-	2,3	2,3	2,8	5,2	
DOC	mg/l	-	-	-	-	1,5	2,2	2,5	4,2	
Durezza	°F	-	-	-	-	33,9	33,3	35,1	35,7	
Alluminio (Al)	mg/l	-	-	-	-	< 20	< 20	< 20	< 20	
Alluminio totale (AI)	mg/l	-	-	-	-	68	59	< 20	91	
Arsenico (As)	mg/l	-	-	-	-	< 1	1	1	2	
Cadmio (Cd)	mg/l	-	-	-	-	< 0.5	< 0.5	< 0.5	< 0.5	
Calcio (Ca)	mg/l	-	-	-	-	102,9	101,6	117,6	113,1	
Cromo esavalente (Cr)	mg/l	-	-	-	-	< 0.5	< 0.5	< 0.5	< 0.5	
Cromo totale (Cr)	mg/l	-	-	-	-	< 5	< 5	< 5	< 5	
Ferro (Fe)	mg/l	-	-	-	-	< 20	< 20	< 20	< 20	
Ferro totale (Fe)	mg/l	-	-	-	-	88	71	< 20	263	
Magnesio (Mg)	mg/l	-	-	-	-	21,8	21,7	18,6	18,9	
Manganese (Mn)	mg/l	-	-	-	-	9	8	< 5	14	
Mercurio (Hg)	mg/l	-	-	-	-	< 0.1	< 0.1	< 0.1	< 0.1	
Nichel (Ni)	mg/l	-	-	-	-	< 2	< 2	< 2	< 2	
Piombo (Pb)	mg/l	-	-	-	-	< 1	< 1	< 1	< 1	
Potassio (K)	mg/l	-	-	-	-	3,6	3,8	3,4	4,8	
Rame (Cu)	mg/l	-	-	-	-	< 10	< 10	< 10	< 10	
Silicio (Si)	mg/l	-	-	-	-	4,6	4,5	5,3	5,3	
Sodio (Na)	mg/l	=.	-	-	-	6,6	6,8	7,4	16,6	
Zinco (Zn)	mg/l	-	-	-	-	< 10	< 10	< 10	< 10	
Fosforo totale (P)	mg/l	-	-	-	-	0,04	0,03	0,146	0,441	
Ortofosfato (PO ₄)	mg/l	=	-	-	-	< 0.2	< 0.2	< 0.2	0,3	
Azoto ammoniacale (N)	mg/l	=	-	-	-	0,06	0,05	< 0.04	3,2	

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 EE2PEMB10B5001 A 92 di 121

	1			IIMICO-FISICA E		ICA		T		
		I CAMP	_	II CAM	PAGNA	III CAM	PAGNA	IV CAM	PAGNA	
Parametri	UdM	GENNAI	O 2018	MAGGI	O 2018	LUGLI	0 2018	ОТТОВІ	OTTOBRE 2018	
		Monte	Valle	Monte	Valle	Monte	Valle	Monte	Valle	
Azoto nitrico (N)	mg/l	-	-	-	-	4,2	3,7	3,5	2,2	
Azoto nitroso (N)	mg/l	-	-	-	-	44	35	17	38	
Azoto totale (N)	mg/l	-	-	-	-	4,3	3,8	3,5	5,6	
Cloruri (CI)	mg/l	-	-	-	-	9	8	13	18	
Solfati (SO ₄)	mg/l	-	-	-	-	42	41	49	52	
Idrocarburi leggeri C<12	mg/l	-	-	-	-	< 30	< 30	< 30	< 30	
Idrocarburi pesanti C>12	mg/l	-	-	-	-	< 30	< 30	< 30	< 30	
Idrocarburi totali (espressi come n-esano) - somma	mg/l	-	-	-	-	< 30	< 30	< 30	< 30	
TENSIOATTIVI		-	-	-	-					
Tensioattivi anionici (MBAS)	mg/l	-	-	-	-	< 0.05	< 0.05	< 0.05	0,54	
Tensioattivi non ionici (TAS)	mg/l	-	-	-	-	< 0.05	< 0.05	< 0.05	< 0.05	
COMPOSTI ORG. AROMATICI		-	-	-	-					
Benzene	mg/l	-	-	-	-	< 0.1	< 0.1	< 0.1	< 0.1	
Toluene	mg/l	-	-	-	-	< 1	< 1	< 1	< 1	
orto-Xilene	mg/l	-	-	_	-	< 1	< 1	< 1	< 1	
meta-Xilene	mg/l	_	-	_	-	<1	< 1	< 1	< 1	
para-Xilene	mg/l	_	-	_	-	< 1	< 1	< 1	< 1	
COMPOSTI ORG. ALOGENATI		_	_	_	-	_	_	_		
Carbonio tetracloruro	mg/l	_	-	_	-	< 0.1	< 0.1	< 0.1	< 0.1	
2-clorotoluene	mg/l	_	-	_	-	< 1	< 1	< 1	< 1	
3-clorotoluene	mg/l	_	-	_	-	<1	< 1	< 1	< 1	
4-clorotoluene	mg/l	-	-	-	-	< 1	< 1	< 1	< 1	
1,2-dicloroetano	mg/l	_	-	-	-	< 0.3	< 0.3	< 0.3	< 0.3	
Diclorometano	mg/l	-	-	-	-	< 0.15	< 0.15	< 0.15	< 0.15	
Esaclorobutadiene	mg/l	-	-	-	-	< 0.01	< 0.01	< 0.01	< 0.01	
Tetracloroetilene	mg/l	-	-	-	-	< 0.1	< 0.1	< 0.1	< 0.1	
1,1,1-tricloroetano	mg/l	-	-	-	-	< 0.1	< 0.1	< 0.1	< 0.1	
Tricloroetilene	mg/l	-	-	-	-	< 0.1	< 0.1	< 0.1	< 0.1	
Triclorometano	mg/l	-	-	-	-	< 0.01	< 0.01	< 0.01	0,02	
CLOROBENZENI		-	-	-	-					
Monoclorobenzene	mg/l	-	-	-	-	< 1	< 1	< 1	< 1	
1,2-diclorobenzene	mg/l	-	-	-	-	< 1	< 1	< 1	< 1	
1,3-diclorobenzene	mg/l	-	-	-	-	<1	< 1	< 1	< 1	
1,4-diclorobenzene	mg/l	-	_	_	-	< 0.05	< 0.05	< 0.05	< 0.05	
1,2,3-triclorobenzene	mg/l	-	-	-	-	< 0.4	< 0.4	< 0.4	< 0.4	
1,2,4-triclorobenzene	mg/l	-	-	-	-	< 0.4	< 0.4	< 0.4	< 0.4	
1,3,5-triclorobenzene	mg/l	-	-	-	-	< 0.4	< 0.4	< 0.4	< 0.4	
Esaclorobenzene	mg/l	-	-	-	-	< 0.001	< 0.001	< 0.001	< 0.001	
Conta Escherichia coli	UFC/100 ml	-	-	-	-	2200	2100	120	52000	

Tab. 5.100 Esito analisi chimico-fisiche

In tutti i monitoraggi effettuati non sono stati rilevati superamenti delle concentrazioni soglia di contaminazione (CSC).

RISULTATI MISURA DI PORTATA							
PARAMETRO	UNITA' DI	STAZIONE	I CAMPAGNA	II CAMPAGNA	III CAMPAGNA	IV CAMPAGNA	
PARAIVIETRO	MISURA	STAZIONE	GENNAIO 2018	APRILE 2018	LUGLIO 2018	OTTOBRE 2018	

	Progetto	Lotto	Codifica Documento	Rev.	Foglio 93 di 121
Doc. N.	INOR	11	EE2PEMB10B5001	Α	93 di 121

RISULTATI MISURA DI PORTATA								
Doutata	m3/c	AV-SO-SU-37	alveo in asciutta	< 0,01	0,04	< 0,01		
Portata	m³/s	AV-SO-SU-38	alveo in asciutta	< 0,01	0,03	< 0,01		

Tab. 5.101 Risultati delle misure di portata dello Scolo Bulgarella, fase AO - 2018

Lo Scolo Bulgarella presenta portate molto basse nel corso di tutto il periodo di monitoraggio, con valori simili tra le due sezioni, nella campagna di gennaio 2018 il corso d'acqua era in asciutta.

5.8.3 Monitoraggio della funzionalità fluviale I.F.F.

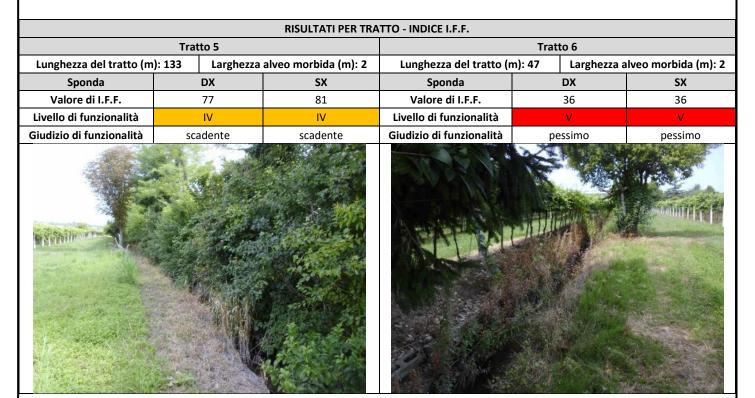
In data 01/08/2018 è stata effettuata una campagna di indagine in cui è stato monitorato il livello di funzionalità fluviale dello scolo Bulgarella nel tratto che va da 50 m a valle della stazione di valle (AV-SO-SU-38) a 50 m a monte della stazione di monte (AV-SO-SU-37) per una lunghezza totale di 521 m. La valutazione secondo la metodica I.F.F. ha permesso di suddividere la porzione fluviale di indagine in 6 tratti omogenei.

Nello specifico, nelle tabelle successive, si riportano i risultati ottenuti nei singoli tratti.

RISULTATI PER TRATTO - INDICE I.F.F.									
	Tratto 1		Tratto 2						
Lunghezza del tratto (m	Lunghezza del tratto (m): 62 Larghezza alveo morbida (m): 2								
Sponda	DX	SX	Sponda		DX		Х		
Valore di I.F.F.	96	96 96			102 102				
Livello di funzionalità	IV	IV	Livello di funzionalità	Ш	IV	Ш	IV		
Giudizio di funzionalità	scadente	scadente	Giudizio di funzionalità	mediocr	e-scadente	mediocre	-scadente		

Tab. 5.102 Risultati dell'applicazione dell'Indice di Funzionalità Fluviale sullo Scolo Bulgarella - Agosto 2018

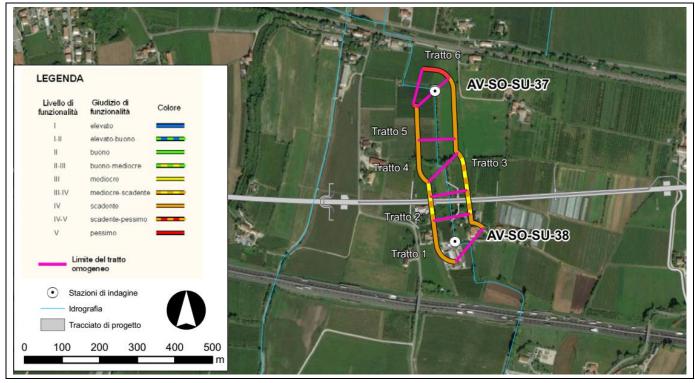
RISULTATI PER TRATTO - INDICE I.F.F.									
	Tratt	o 3			Tratto 4				
Lunghezza del tratto (m): 75 Larghezza alveo morbida (m): 2					Lunghezza del tratto (m): 88 Larghezza alveo morbida (r				
Sponda	Į.	OX	S	X	Sponda	DX	SX		
Valore di I.F.F.	1	02	10	06	Valore di I.F.F.	96	96		
Livello di funzionalità	III	IV	III	IV	Livello di funzionalità	IV	IV		
Giudizio di funzionalità	mediocre	e-scadente	adente mediocre-scadente Giudizio di funzionalità scadente scadent						



Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 EE2PEMB10B5001 A 94 di 121

	RISULTATI PER TRA	TTO - INDICE I.F.F.				
Trat	to 3	Tratto 4				
Lunghezza del tratto (m): 75	Larghezza alveo morbida (m): 2	Lunghezza del tratto (m): 88	Larghezza alveo morbida (m): 2			

Tab. 5.103 Risultati dell'applicazione dell'Indice di Funzionalità Fluviale sullo Scolo Bulgarella - Agosto 2018



Tab. 5.104 Risultati dell'applicazione dell'Indice di Funzionalità Fluviale sullo Scolo Bulgarella - Agosto 2018

Lo scolo Bulgarella presenta in prevalenza una situazione scadente (livello di funzionalità IV) sia sulla sponda destra che sulla sinistra, nel 64,8% del tratto di indagine.

MAPPA DI FUNZIONALITA' - INDICE I.F.F.

Tab. 5.105 Mappa dei risultati dell'applicazione dell'I.F.F. sullo Scolo Bulgarella - Agosto 2018

5.8.4 Confronto dei risultati tra le stazioni di monte e valle

Si riporta di seguito la tabella dove si raffrontano i dati relativi alle stazioni di MONTE e di VALLE mediante il calcolo del valore dei Δ VIP.

	Qualità Biologica Sco	DLO BULGARELLA								
Da wa wa a tui	AV-SO-SU-37 (Monte)	AV-SO-SU-38 (Valle)	AVUD							
Parametri -	Classe	Classe	ΔVIP							
	I CAMPAGNA AO - 2018									
IBE	alveo in asciutta	alveo in asciutta	-							
ICMi	-	-	-							
	II CAMPAGNA AO - 2018									
IBE	V	V	0							
ICMi	=	III	0							
	III campagna A C	D - 2018								
IBE	IV	V-IV	< 1							
ICMi	-	-	-							
	IV CAMPAGNA AC	D - 2018	•							
IBE	III-IV	IV	< 1							
ICMi	II.	II.	0							

Tab. 5.106 Calcolo ΔVIP tra le stazioni di monte e valle della qualità biologica dello Scolo Bulgarella – fase AO - 2018

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 EE2PEMB10B5001 A 96 di 121

Parametri	_	AMPAGN			CAMPAGN AGGIO 20			CAMPAGN			CAMPAGN	
	Monte	Valle	ΔVIP	Monte	Valle	ΔVIP	Monte	Valle	ΔVIP	Monte	Valle	ΔVIP
рН	-	-	-	-	-	-	7,6	7,7	0,1	8,1	7,6	0,5
Conducibilità	-	-	-	-	-	-	5,77	5,79	0,0	5,75	5,56	0,2
OD (% sat.)	-	-	-	-	-	-	4,25	4,62	-0,4	5,56	2,63	2,9
SST	-	-	-	-	-	-	9,80	10,00	-0,2	10,00	9,80	0,2
COD	-	-	-	-	-	-	8,80	10,00	-1,2	10,00	5,20	4,8
TOC	-	-	-	-	-	-	10,00	10,00	0,0	10,00	9,92	0,1
Alluminio totale	-	-	-	-	-	-	5,28	5,64	-0,4	8,67	4,36	4,3
Cromo totale	-	-	-	-	-	-	9,43	9,43	0,0	9,43	9,43	0,0
Azoto ammoniacale	-	-	-	-	-	-	9,14	9,43	-0,3	9,71	3,20	6,5
Cloruri	-	-	-	-	-	-	7,20	7,40	-0,2	6,40	5,40	1,0
Solfati	-	-	-	-	-	-	5,94	5,97	0,0	5,74	5,66	0,1
Idrocarburi totali	-	-	-	-	-	-	9,79	9,79	0,0	9,79	9,79	0,0
Tensioattivi anionici	-	-	-	-	-	-	10,00	10,00	0,0	10,00	3,20	6,8
Tensioattivi non ionici	-	-	-	-	-	-	10,00	10,00	0,0	10,00	10,00	0,0
Conta Escherichia coli	-	-	-	-	-	-	7,40	7,45	-0,05	8,98	3,44	5,53

Tab. 5.107 Calcolo ΔVIP tra le stazioni di monte e valle della qualità chimica e biologica dello Scolo Bulgarella – fase AO - 2018

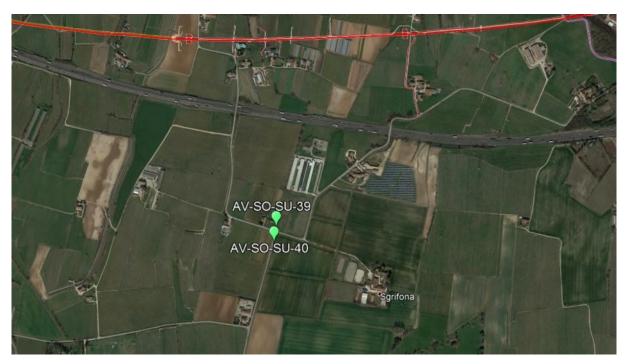
Parametri biologici

Per quanto riguarda la comunità di macroinvertebrati e la comunità diatomica, essendo il parametro calcolato già sotto forma di indice, non viene effettuata la normalizzazione in VIP, ma si procede al calcolo della soglia valutando la differenza di classe tra monte e valle.

Non è possibile calcolare il Δ VIP IBE della prima campagna 2018 in quanto il corso d'acqua si presentava in asciutta. Nell'indagine di aprile 2018 il Δ VIP IBE è pari a 0, nella terza e nella quarta campagna di monitoraggio il Δ VIP è < 1 dato da un lieve peggioramento di mezza classe della stazione di valle rispetto a quella di monte, tale variazione risulta comunque non significativa.

In entrambe le campagne di monitoraggio il Δ VIP calcolato per l'indice ICMi è pari a 0, indice di omogeneità tra le due stazioni.

Parametri chimico-fisici e microbiologici


Le analisi chimico-fisiche e microbiologiche mostrano il buono stato chimico-fisico delle acque della roggia. I VIP calcolati sono generalmente medio-alti, indice di una qualità ottimale.

Dal calcolo dei Δ VIP sono stati riscontrati superamenti della soglia di intervento nella quarta campagna di monitoraggio, in particolare per i parametri *Ossigeno disciolto* (Δ VIP = 2,9), *COD* (Δ VIP = 4,8), *Alluminio totale* (Δ VIP = 4,3), *Azoto ammoniacale* (Δ VIP = 6,5), *Tensioattivi anionici* (Δ VIP = 6,8) ed *Escherichia Coli* (Δ VIP = 5,53). Tali superamenti verranno verificati nella prima campagna di corso d'opera.

5.9 Scolo Bulgarella L.6.O.2

MONITORAGGIO AMBIENTALE LINEA FERROVIARIA AV/CA BRESCIA - VERONA - FASE A.O.							
Comparto	ACQUE SUF	PERFICIALI					
Corso d'acqua oggetto di monitoraggio	Scolo Bulgarella L.6.O.2						
Codice stazione	AV-SO-SU-39	AV-SO-SU-40					
Posizione	Monte	Valle					
Provincia	Verona	Verona					
Comune	Sona	Sona					
Località	Monzambana	Monzambana					
Coordinate GBO	X: 1640936.6	X: 1640929.1					
Coolumate GBO	Y: 5030448.5	Y: 5030388.1					

	riogeno	LOHO	Codilica Documento	Kev.	rogilo
Doc. N.	INOR	11	EE2PEMB10B5001	Α	98 di 121

5.9.1 Monitoraggio parametri biologici

Tab. 5.108 Caratterizzazione delle stazioni biologiche dello Scolo Bulgarella L.6.O.2.

Lo Scolo Bulgarella L.6.O.2 è un piccolo corso d'acqua che in entrambe le stazioni si presenta privo di manufatti artificiali e con substrato a granulometria media, costituita prevalentemente da ciottoli. L'ambiente circostante la stazione di monte è caratterizzato da prati, arativi e incolti in sinistra idrografica e da colture stagionali e urbanizzazione rada in destra idrografica. La stazione di valle è collocata in un contesto di colture stagionali.

Di seguito si riportano i risultati delle analisi biologiche effettuate nel corso dell'anno 2018, per maggiori dettagli si rimanda ai certificati allegati.

RISULTATI QUALITÀ BIOLOGICA – INDICE I.B.E.									
AV-SO-SU-39 (Monte)	I CAMPAGNA GENNAIO 2018	II CAMPAGNA APRILE 2018	III CAMPAGNA LUGLIO 2018	IV CAMPAGNA OTTOBRE 2018					
Totale U. S.	-	-	6	-					
Valore IBE	-	-	3-2	-					
Classe di qualità	-	-	V	-					
Giudizio di qualità	-	-	Ambiente fortemente degradato	-					

Tab. 5.109 Risultati qualità biologica, indice IBE - Fase AO - 2018 - stazione AV-SO-SU-39 (Monte)

Lo Scolo Bulgarella L.6.O.2 nella stazione di monte è sempre stato in asciutta ad eccezione della campagna di luglio 2018 nella quale si è classificato con una V classe IBE.

RISULTATI QUALITÀ BIOLOGICA – INDICE I.B.E.								
AV-SO-SU-39 (Valle)	I CAMPAGNA GENNAIO 2018	II CAMPAGNA APRILE 2018	III CAMPAGNA LUGLIO 2018	IV CAMPAGNA OTTOBRE 2018				
Totale U. S.	-	-	6	-				
Valore IBE	·	-	3-2	-				
Classe di qualità	=	-	V	-				
Giudizio di qualità	-	-	Ambiente fortemente degradato	-				

Tab. 5.110 Risultati qualità biologica, indice IBE – Fase AO – 2018 – stazione AV-SO-SU-40 (Valle)

GENERAL CONTRACTOR Cepav due

	Progetto	Lotto	Codifica Documento	Rev.	Foglio
Doc. N.	INOR	11	EE2PEMB10B5001	Α	99 di 121

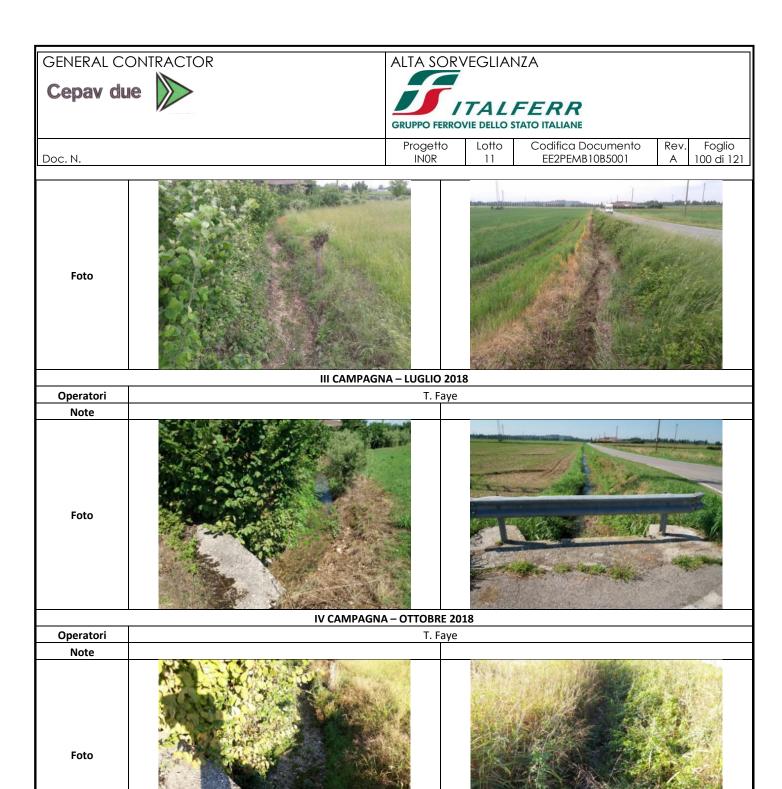
Anche la stazione di valle dello Scolo Bulgarella L.6.O.2 è sempre stato in asciutta ad eccezione della campagna di luglio 2018 nella quale si è classificato con una V classe IBE.

RISULTATI QUALITÀ BIOLOGICA – INDICE ICMI								
AV-SO-SU-39 (Monte)	I CAMPAGNA	II CAMPAGNA	III CAMPAGNA	IV CAMPAGNA				
	GENNAIO 2018	APRILE 2018	LUGLIO 2018	OTTOBRE 2018				
N° specie	-	-	-	-				
ICMi	-	-	-	-				
Classe di qualità	-	-	-	-				

Tab. 5.111 Risultati dell'indice ICMi per la stazione AV-SO-SU-39 (Monte), fase AO - 2018

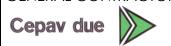
Lo Scolo Bulgarella L.6.O.2 di monte era in asciutta in entrambe le indagini effettuate ad aprile e ad ottobre 2018.

	RISULTATI QUALITÀ BIOLOGICA – INDICE ICMI								
AV-SO-SU-40 (Valle)	SO SIL 40 (Valle) I CAMPAGNA III CAMPAGNA III CAMPAGNA								
AV-30-30-40 (Valle)	GENNAIO 2018	APRILE 2018	LUGLIO 2018	OTTOBRE 2018					
N° specie	-	-	-	-					
ICMi	-	=	=	-					
Classe di qualità	-	=	-	-					


Tab. 5.112 Risultati dell'indice ICMi per la stazione AV-SO-SU-40 (Valle), fase AO - 2018

Lo Scolo Bulgarella L.6.O.2 di valle era in asciutta in entrambe le indagini effettuate ad aprile e ad ottobre 2018.

5.9.2 Monitoraggio parametri chimico-fisici e microbiologici


Di seguito si riportano i risultati delle analisi chimico-fisiche e microbiologiche nel corso dell'anno 2018, per maggiori dettagli si rimanda ai certificati allegati.

Chariana	AV CO CU 20 (Manta)	AV CO CU 40 (Valla)
Stazione	AV-SO-SU-39 (Monte)	AV-SO-SU-40 (Valle)
enominazione	Scolo B	ulgarella L.6.O.2
	I CAMPAGNA – GEN	NAIO 2018
Operatori		T. Faye
Note		
Foto	II CAMPAGNA – MA	GGIO 2018
Operatori		T. Faye
Note		

Tab. 5.113 Caratterizzazione delle stazioni chimico-fisiche dello Scolo Bulgarella L.6.O.2

		RISULTA	TI QUALITÀ CH	IMICO-FISICA E	Microbiologi	CA			
Parametri	UdM	I CAMPAGNA UdM GENNAIO 2018		II CAMPAGNA MAGGIO 2018		III CAMPAGNA LUGLIO 2018		IV CAMPAGNA OTTOBRE 2018	
		Monte	Valle	Monte	Valle	Monte	Valle	Monte	Valle
Temperatura	°C	-	-	-	-	19,3	19,2	-	-
рН	-	-	-	-	-	7,9	7,8	-	-
Conducibilità elettrica specifica	μS/cm a 20°C	-	-	-	-	575	572	-	-
Potenziale Redox	mV	-	-	-	-	174	193	-	-
Ossigeno disciolto (O ₂)	mg/l	-	-	-	-	5,33	5,27	-	-

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 EE2PEMB10B5001 A 101 di 121

		I CAMP		IIMICO-FISICA E		1	PAGNA	IV CAM	PAGNA	
Parametri	UdM	GENNAI	O 2018				O 2018	OTTOBRE 2018		
		Monte	Valle	Monte	Valle	Monte	Valle	Monte	Valle	
Ossigeno disciolto (O ₂)	% di sat.	-	-	-	-	58,4	57,6	-	-	
Solidi sospesi totali (SST)	mg/l	-	-	-	-	< 5	< 5	-	-	
COD (O2)	mg/l	-	-	-	-	< 5	< 5	-	-	
BOD5 (O2)	mg/l	-	-	-	-	< 5	< 5	-	-	
TOC	mg/l	-	-	-	-	2,5	3	-	-	
DOC	mg/l	-	-	-	-	2,3	2,3	-	_	
Durezza	°F	-	-	-	-	31,9	31,9	-	_	
Alluminio (AI)	mg/l	-	-	-	-	< 20	< 20	-	-	
Alluminio totale (AI)	mg/l	_	_	_	_	39	39	_	_	
Arsenico (As)	mg/l	_	_	_	_	1	1	_	_	
Cadmio (Cd)	mg/l	_	-	_	_	< 0.5	< 0.5	_	_	
Calcio (Ca)	1	_	_	_	_	98,2	96,6	_	_	
Cromo esavalente (Cr)	mg/l	<u>-</u>	-	_	_	< 0.5	< 0.5	_	-	
Cromo esavalente (Cr) Cromo totale (Cr)	mg/l	<u>-</u>	-	-	-	< 0.5		-	-	
` '	mg/l			-			< 5			
Ferro (Fe)	mg/l	-	-	-	-	< 20	< 20	-	-	
Ferro totale (Fe)	mg/l	-	-	-	-	31	30	-	-	
Magnesio (Mg)	mg/l	-	-	-	-	20,9	21	-	-	
Manganese (Mn)	mg/l	-	-	-	-	11	12	-	-	
Mercurio (Hg)	mg/l	-	-	-	-	< 0.1	< 0.1	-	-	
Nichel (Ni)	mg/l	-	-	-	-	< 2	< 2	-	-	
Piombo (Pb)	mg/l	-	-	-	-	< 1	< 1	-	-	
Potassio (K)	mg/l	-	-	-	-	4	4,1	-	-	
Rame (Cu)	mg/l	-	-	-	-	< 10	< 10	-	-	
Silicio (Si)	mg/l	-	-	-	-	4,4	4,3	-	-	
Sodio (Na)	mg/l	-	-	-	-	9,9	9,9	-	-	
Zinco (Zn)	mg/l	-	-	-	-	< 10	< 10	-	-	
Fosforo totale (P)	mg/l	-	-	-	-	0,076	0,207	-	-	
Ortofosfato (PO ₄)	mg/l	-	-	-	-	< 0.2	< 0.2	-	-	
Azoto ammoniacale (N)	mg/l	-	-	-	-	< 0.04	0,04	-	-	
Azoto nitrico (N)	mg/l	-	-	-	-	3,6	3,7	-	-	
Azoto nitroso (N)	mg/l	-	-	-	-	30	31	-	-	
Azoto totale (N)	mg/l	-	-	-	-	3,8	3,7	-	-	
Cloruri (Cl)	mg/l	-	-	-	-	15	15	-	-	
Solfati (SO ₄)	mg/l	-	-	-	-	40	40	-	-	
Idrocarburi leggeri C<12	mg/l	-	-	-	-	< 30	< 30	-	-	
Idrocarburi pesanti C>12	mg/l	-	-	-	-	< 30	< 30	-	-	
Idrocarburi totali (espressi	mg/l	-	-	-	-	< 30	< 30	-	-	
come n-esano) - somma	0,									
TENSIOATTIVI		-	-	-	-		2.25	-	-	
Tensioattivi anionici (MBAS)	mg/l	-	-	-	-	< 0.05	< 0.05	-	-	
Tensioattivi non ionici (TAS)	mg/l	-	-	-	-	< 0.05	< 0.05	-	-	
COMPOSTI ORG. AROMATICI		-	-	-	-			-	-	
Benzene 	mg/l	-	-	-	-	< 0.1	< 0.1	-	-	
Toluene	mg/l	-	-	-	-	< 1	< 1	-	-	
orto-Xilene	mg/l	-	-	-	-	< 1	< 1	-	-	
meta-Xilene	mg/l	-	-	-	-	< 1	< 1	-	-	
para-Xilene	mg/l	-	-	-	-	< 1	< 1	-	-	
COMPOSTI ORG. ALOGENATI		-	-	-	-			-	-	
Carbonio tetracloruro	mg/l	-	-	-	-	< 0.1	< 0.1	-	-	

	Progetto	Lotto	Codifica Documento	Rev.	Foglio 102 di 121
Doc. N.	INOR	11	EE2PEMB10B5001	Α	102 di 121

		RISULTA	TI QUALITÀ CH	IMICO-FISICA E	Microbiologi	CA			
Parametri	UdM	I CAMPAGNA UdM GENNAIO 2018		II CAMPAGNA MAGGIO 2018		III CAMPAGNA LUGLIO 2018		IV CAMPAGNA OTTOBRE 2018	
		Monte	Valle	Monte	Valle	Monte	Valle	Monte	Valle
2-clorotoluene	mg/l	-	-	-	-	< 1	< 1	-	ı
3-clorotoluene	mg/l	-	1	-	-	< 1	< 1	-	i
4-clorotoluene	mg/l	-	1	-	-	< 1	< 1	-	1
1,2-dicloroetano	mg/l	-	-	-	-	< 0.3	< 0.3	-	ı
Diclorometano	mg/l	-	1	-	-	< 0.15	< 0.15	-	1
Esaclorobutadiene	mg/l	-	1	-	-	< 0.01	< 0.01	-	1
Tetracloroetilene	mg/l	-	1	-	-	< 0.1	< 0.1	-	1
1,1,1-tricloroetano	mg/l	-	1	-	-	< 0.1	< 0.1	-	1
Tricloroetilene	mg/l	-	1	-	-	< 0.1	< 0.1	-	1
Triclorometano	mg/l	-	-	-	-	< 0.01	< 0.01	-	-
CLOROBENZENI		-	-	-	-			-	1
Monoclorobenzene	mg/l	-	-	-	-	< 1	< 1	-	-
1,2-diclorobenzene	mg/l	-	1	-	-	< 1	< 1	-	1
1,3-diclorobenzene	mg/l	-	-	-	-	< 1	< 1	-	ı
1,4-diclorobenzene	mg/l	-	1	-	-	< 0.05	< 0.05	-	1
1,2,3-triclorobenzene	mg/l	-	1	-	-	< 0.4	< 0.4	-	1
1,2,4-triclorobenzene	mg/l	-	-	-	-	< 0.4	< 0.4	-	ı
1,3,5-triclorobenzene	mg/l	-	-	-	-	< 0.4	< 0.4	-	-
Esaclorobenzene	mg/l	-	-	-	-	< 0.001	< 0.001	-	-
Conta Escherichia coli	UFC/100 ml	-	-	-	-	1100	820	-	-

Tab. 5.114 Esito analisi chimico-fisiche

Nel monitoraggo effettuato non sono stati rilevati superamenti delle concentrazioni soglia di contaminazione (CSC).

RISULTATI MISURA DI PORTATA							
PARAMETRO	UNITA' DI MISURA	STAZIONE	I CAMPAGNA GENNAIO 2018	II CAMPAGNA APRILE 2018	III CAMPAGNA LUGLIO 2018	IV CAMPAGNA OTTOBRE 2018	
Doutete	m3/c	AV-SO-SU-39	alveo in asciutta	alveo in asciutta	0,04	alveo in asciutta	
Portata	m³/s	AV-SO-SU-40	alveo in asciutta	8 APRILE 2018 LUGLIO 2018 ta alveo in asciutta 0,04	alveo in asciutta		

Tab. 5.115 Risultati delle misure di portata dello Scolo Bulgarella L.6.O.2, fase AO - 2018

Le portate sono state misurate nelle due sezioni dello Scolo Bulgarella L.6.O.2 nella campagna di luglio 2018 e sono risultate entrambe pari a $0.04 \text{ m}^3/\text{s}$, nelle altre campagne il CIS si presentava in asciutta.

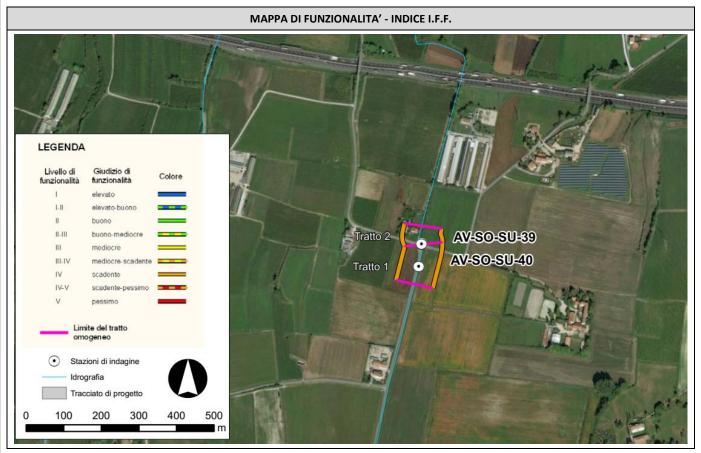
5.9.3 Monitoraggio della funzionalità fluviale I.F.F.

In data 31/07/2018 è stata effettuata una campagna di indagine in cui è stato monitorato il livello di funzionalità fluviale dello scolo Bulgarella L.6.O.2 nel tratto che va da 50 m a valle della stazione di valle (AV-SO-SU-40) a 50 m a monte della stazione di monte (AV-SO-SU-39) per una lunghezza totale di 161 m. La valutazione secondo la metodica I.F.F. ha permesso di suddividere la porzione fluviale di indagine in 2 tratti omogenei.

Nello specifico, nelle tabelle successive, si riportano i risultati ottenuti nei singoli tratti.

	Progetto	Lotto	Codifica Documento	Rev.	Foglio 103 di 121
Doc. N.	INOR	11	EE2PEMB10B5001	Α	103 di 121

RISULTATI PER TRATTO - INDICE I.F.F.									
Tratto 1 Tratto 2									
Lunghezza del tratto (m): 111 Larghezza	alveo morbida (m): 2	Lunghezza del tratto (m): 50 Larghezza alveo		alveo morbida (m): 1				
Sponda	DX	SX	Sponda	DX	SX				
Valore di I.F.F.	86	86	Valore di I.F.F.	85	81				
Livello di funzionalità	IV	IV	Livello di funzionalità	IV	IV				
Giudizio di funzionalità	scadente	scadente	Giudizio di funzionalità	scadente	scadente				



Tab. 5.116 Risultati dell'applicazione dell'Indice di Funzionalità Fluviale sullo Scolo Bulgarella L.6.O.2 – Luglio 2018

Lo Scolo Bulgarella L.6.O.2 presenta una situazione sempre scadente (livello di funzionalità IV) sia sulla sponda destra che sulla sinistra.

Tab. 5.117 Mappa dei risultati dell'applicazione dell'I.F.F. sullo Scolo Bulgarella L.6.O.2 – Luglio 2018

5.9.4 Confronto dei risultati tra le stazioni di monte e valle

Si riporta di seguito la tabella dove si raffrontano i dati relativi alle stazioni di MONTE e di VALLE mediante il calcolo del valore dei Δ VIP.

	Qualità Biologica Sco	DLO BULGARELLA	
Da ua ua atui	AV-SO-SU-39 (Monte)	AV-SO-SU-40 (Valle)	AVUD
Parametri	Classe	AV-SO-SU-40 (Valle) Classe O - 2018 alveo in asciutta - O - 2018 alveo in asciutta alveo in asciutta v - O - 2018	ΔVIP
	I campagna AO	- 2018	·
IBE	alveo in asciutta	alveo in asciutta	-
ICMi	-	-	-
	II CAMPAGNA AC	0 - 2018	
IBE	alveo in asciutta	alveo in asciutta	-
ICMi	alveo in asciutta	alveo in asciutta	-
	III CAMPAGNA A C) - 2018	
IBE	V	V	0
ICMi	-	-	-
	IV campagna AG	D - 2018	•
IBE	alveo in asciutta	alveo in asciutta	-

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 EE2PEMB10B5001 A 105 di 121

	Qualità Biologica Scolo Bulgarella								
Dovomotvi	AV-SO-SU-39 (Monte)	AV-SO-SU-40 (Valle)	ΔVΙΡ						
Parametri	Classe	Classe	ΔVIP						
ICMi	alveo in asciutta	alveo in asciutta	-						

Tab. 5.118 Calcolo ΔVIP tra le stazioni di monte e valle della qualità biologica dello Scolo Bulgarella L.6.O.2 – fase AO - 2018

	QUALITÀ CHIMICO-FISICA E MICROBIOLOGICA SCOLO BULGARELLA L.6.O.2											
	10	AMPAGN	Α	II	II CAMPAGNA		III CAMPAGNA			IV CAMPAGNA		
Parametri	GE	NNAIO 20	18	М	MAGGIO 2018			UGLIO 201	8	ОТ	TOBRE 20	18
	Monte	Valle	ΔVIP	Monte	Valle	ΔVIP	Monte	Valle	ΔVIP	Monte	Valle	ΔVΙΡ
рН	-	-	-	-	-	-	7,9	7,8	0,1	-	1	-
Conducibilità	-	-	-	-	-	-	5,78	5,78	0,0	-	1	-
OD (% sat.)	-	-	-	-	-	-	4,84	4,76	0,1	-	-	-
SST	-	-	-	-	-	-	10,00	10,00	0,0	-	1	-
COD	-	-	-	-	-	-	10,00	10,00	0,0	-	-	•
TOC	-	-	-	-	-	-	10,00	10,00	0,0	-	1	-
Alluminio totale	-	-	-	-	-	-	6,88	6,88	0,0	-	-	-
Cromo totale	-	-	-	-	-	-	9,43	9,43	0,0	-	-	-
Azoto ammoniacale	-	-	-	-	-	-	9,71	9,71	0,0	-	-	-
Cloruri	-	-	-	-	-	-	6,00	6,00	0,0	-	-	-
Solfati	-	-	-	-	-	-	6,00	6,00	0,0	-	-	-
Idrocarburi totali	-	-	-	-	-	-	9,79	9,79	0,0	-	-	-
Tensioattivi anionici	-	-	-	-	-	-	10,00	10,00	0,0	-	-	-
Tensioattivi non ionici	-	-	-	-	-	-	10,00	10,00	0,0	-	ı	-
Conta Escherichia coli	-	-	-	-	-	-	7,95	8,20	-0,25	-	ı	-

Tab. 5.119 Calcolo ΔVIP tra le stazioni di monte e valle della qualità chimica e biologica dello Scolo Bulgarella L.6.O.2 – fase AO - 2018

Parametri biologici

Per quanto riguarda la comunità di macroinvertebrati e la comunità diatomica, essendo il parametro calcolato già sotto forma di indice, non viene effettuata la normalizzazione in VIP, ma si procede al calcolo della soglia valutando la differenza di classe tra monte e valle.

Nella terza campagna 2018 il Δ VIP IBE è pari a 0. Non è possibile calcolare il Δ VIP IBE delle restanti campagne in quanto il corso d'acqua si presentava in asciutta.

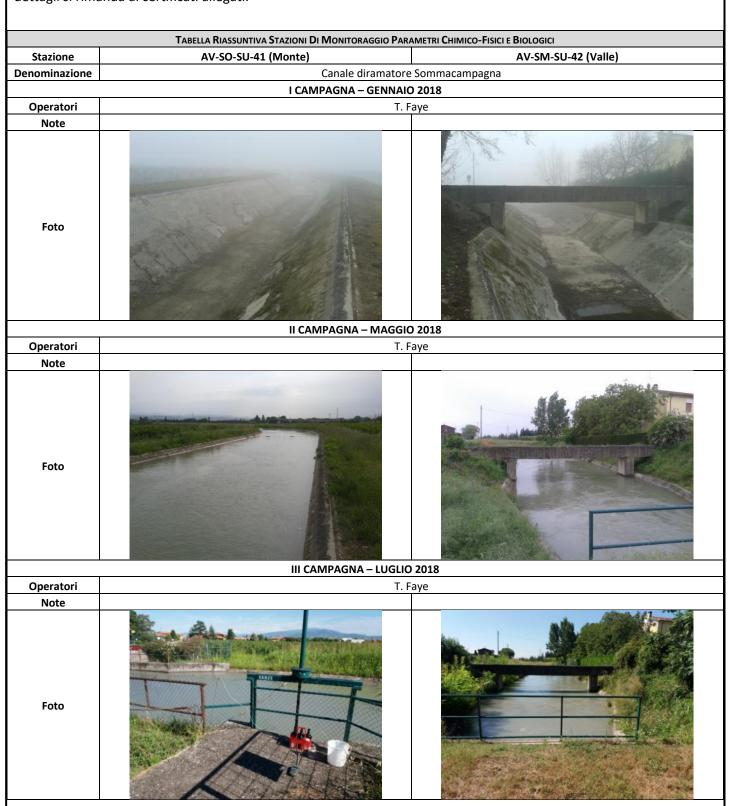
In entrambe le campagne di monitoraggio ICMi il corso d'acqua si presentava in asciutta, ΔVIP non calcolabile.

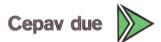
Parametri chimico-fisici e microbiologici

Le analisi chimico-fisiche e microbiologiche mostrano il buono stato chimico-fisico delle acque della roggia. I VIP calcolati sono generalmente medio-alti, indice di una qualità ottimale.

Dal calcolo dei ΔVIP non sono stati riscontrati superamenti della soglia di attenzione e/o intervento.

5.10 Canale diramatore Sommacampagna


MONITORAGGIO AMBIENTA	ALE LINEA FERROVIARIA AV/CA BRESCIA -	- VERONA - FASE A.O.				
Comparto	ACQUE SUPERFICIALI					
Corso d'acqua oggetto di monitoraggio	Canale diramator	e Sommacampagna				
Codice stazione	AV-SO-SU-41	AV-SM-SU-42				
Posizione	Monte	Valle				
Provincia	Verona	Verona				
Comune	Sona	Sommacampagna				
Località	Messedaglia	Betlemme				
Coordinate GBO	X: 1648371.6	X: 1647328.5				
Coordinate GBO	Y: 5032229.6	Y: 5031918.9				



5.10.1 Monitoraggio parametri chimico-fisici e microbiologici

Di seguito si riportano i risultati delle analisi chimico-fisiche e microbiologiche nel corso dell'anno 2018, per maggiori dettagli si rimanda ai certificati allegati.

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 EE2PEMB10B5001 A 108 di 121

IV CAMPAGNA – OTTOBRE 2018

Operatori T. Faye

Note

Foto

Tab. 5.120 Caratterizzazione delle stazioni chimico-fisiche del Canale diramatore Sommacampagna

		RISULTA	TI QUALITÀ CH	IIMICO-FISICA E	Microbiologi	ICA				
Do wo wo o twi	11484	I CAMPAGNA GENNAIO 2018		_	PAGNA		PAGNA	IV CAMPAGNA		
Parametri	UdM	Monte	Valle	MAGGIO 2018 Monte Valle		Monte	O 2018 Valle	OTTOBRE 2018		
Temperatura	°C	- IVIOIILE	valle	9,8	9,9	17,7	17,8	Monte	Valle 14,1	
рН	-	-	-	7,9	7,7	7,8	8,0	_	7,8	
Conducibilità elettrica specifica	μS/cm a 20°C	-	-	193	193	250	250	-	250	
Potenziale Redox	mV	-	-	69	94	193	184	-	192	
Ossigeno disciolto (O ₂)	mg/l	-	-	10,19	9,9	5,76	5,77	-	5,7	
Ossigeno disciolto (O ₂)	% di sat.	-	-	91,9	89	61,2	61,2	-	60,4	
Solidi sospesi totali (SST)	mg/l	-	-	37	52	42	47	-	5	
COD (O2)	mg/l	-	-	< 5	< 5	< 5	< 5	-	11	
BOD5 (O2)	mg/l	-	-	< 5	< 5	< 5	< 5	-	< 5	
TOC	mg/l	-	-	1,2	1,2	1,9	2,1	-	3,2	
DOC	mg/l	-	-	1,1	1,1	1	1,1	-	2,7	
Durezza	°F	-	-	10,1	10,1	12,8	12,8	-	14,7	
Alluminio (Al)	mg/l	-	-	21	22	29	27	-	< 20	
Alluminio totale (AI)	mg/l	-	-	278	283	332	383	-	< 20	
Arsenico (As)	mg/l	-	-	2	2	2	2	-	2	
Cadmio (Cd)	mg/l	-	-	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	
Calcio (Ca)	mg/l	-	-	29,2	27,9	34,3	34,3	-	37,3	
Cromo esavalente (Cr)	mg/l	-	-	< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5	
Cromo totale (Cr)	mg/l	-	-	< 5	< 5	< 5	< 5	-	< 5	
Ferro (Fe)	mg/l	-	-	< 20	21	< 20	< 20	-	< 20	
Ferro totale (Fe)	mg/l	-	-	250	259	464	478	-	< 20	
Magnesio (Mg)	mg/l	-	-	7,8	7,6	12,2	12	-	10,7	
Manganese (Mn)	mg/l	-	-	< 5	< 5	< 5	< 5	-	10	
Mercurio (Hg)	mg/l	-	-	< 0.1	< 0.1	< 0.1	< 0.1	-	< 0.1	
Nichel (Ni)	mg/l	-	-	< 2	< 2	< 2	< 2	-	3	
Piombo (Pb)	mg/l	-	-	< 1	< 1	< 1	< 1	-	< 1	
Potassio (K)	mg/l	-	-	1,6	1,4	2,5	1,8	-	2,8	
Rame (Cu)	mg/l	-	-	< 10	< 10	< 10	< 10	-	< 10	
Silicio (Si)	mg/l	-	-	2,7	2,6	1,9	1,9	-	0,4	
Sodio (Na)	mg/l	-	-	3,8	3,6	4,7	4,7	-	6,3	
Zinco (Zn)	mg/l	-	-	< 10	< 10	< 10	< 10	-	< 10	

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 EE2PEMB10B5001 A 109 di 121

		LCAMP	ΔGΝΔ	II CAM	ΡΔGΝΔ	III CAM	PAGNA	IV CAM	ΡΔGΝΔ
Parametri	I CAMPAGNA UdM GENNAIO 2018		II CAMPAGNA MAGGIO 2018			0 2018	IV CAMPAGNA OTTOBRE 2018		
rarametri	Outvi	Monte	Valle	Monte	Valle	Monte	Valle	Monte	Valle
Fosforo totale (P)	mg/l	-	-	< 0.020	< 0.020	< 0.020	< 0.020	-	0,117
Ortofosfato (PO ₄)	mg/l	_	_	< 0.2	< 0.2	< 0.2	< 0.2	_	< 0.2
Azoto ammoniacale (N)	mg/l	_	_	0,04	0,04	0,06	0,05	_	0,23
Azoto nitrico (N)	mg/l	_	_	< 1.0	< 1.0	< 1.0	< 1.0	_	< 1.0
Azoto nitroso (N)	mg/l	_	_	16	14	13	12	_	21
Azoto totale (N)	mg/l		_	1	2,2	< 1.0	< 1.0	_	1,3
Cloruri (CI)	mg/l	-	_	4	4	8	6	_	8
Solfati (SO ₄)	mg/l			24	24	37	34		45
Idrocarburi leggeri C<12				< 30	< 30	< 30	< 30		< 30
	mg/l		-						
Idrocarburi pesanti C>12	mg/l	-	-	< 30	< 30	< 30	< 30	-	57
Idrocarburi totali (espressi come n-esano) - somma	mg/l	-	-	< 30	< 30	< 30	< 30	-	57
TENSIOATTIVI		-	-					-	
Tensioattivi anionici (MBAS)	mg/l	-	-	< 0.05	< 0.05	< 0.05	< 0.05	-	0,17
Tensioattivi non ionici (TAS)	mg/l	-	-	< 0.05	< 0.05	< 0.05	< 0.05	-	< 0.05
COMPOSTI ORG. AROMATICI		-	-					-	
Benzene	mg/l	-	-	< 0.1	< 0.1	< 0.1	< 0.1	-	< 0.1
Toluene	mg/l	-	-	< 1	<1	< 1	< 1	-	< 1
orto-Xilene	mg/l	-	-	< 1	< 1	< 1	< 1	-	< 1
meta-Xilene	mg/l	-	-	< 1	< 1	< 1	< 1	-	< 1
para-Xilene	mg/l	-	-	< 1	< 1	< 1	< 1	-	< 1
COMPOSTI ORG. ALOGENATI		-	-					-	
Carbonio tetracloruro	mg/l	-	-	< 0.1	< 0.1	< 0.1	< 0.1	=	< 0.1
2-clorotoluene	mg/l	-	-	< 1	< 1	< 1	< 1	=	< 1
3-clorotoluene	mg/l	-	-	< 1	< 1	< 1	< 1	-	< 1
4-clorotoluene	mg/l	-	-	< 1	<1	< 1	< 1	-	< 1
1,2-dicloroetano	mg/l	-	-	< 0.3	< 0.3	< 0.3	< 0.3	=	< 0.3
Diclorometano	mg/l	-	-	< 0.15	< 0.15	< 0.15	< 0.15	-	< 0.15
Esaclorobutadiene	mg/l	-	-	< 0.01	< 0.01	< 0.01	< 0.01	-	< 0.02
Tetracloroetilene	mg/l	-	-	< 0.1	< 0.1	< 0.1	< 0.1	-	< 0.1
1,1,1-tricloroetano	mg/l	-	-	< 0.1	< 0.1	< 0.1	< 0.1	-	< 0.1
Tricloroetilene	mg/l	-	-	< 0.1	< 0.1	< 0.1	< 0.1	-	< 0.1
Triclorometano	mg/l	-	-	< 0.01	< 0.01	< 0.01	< 0.01	-	0,01
CLOROBENZENI		-	-					-	
Monoclorobenzene	mg/l	-	-	< 1	< 1	< 1	< 1	-	< 1
1,2-diclorobenzene	mg/l	-	-	< 1	< 1	< 1	< 1	-	< 1
1,3-diclorobenzene	mg/l	-	-	< 1	< 1	< 1	< 1	-	< 1
1,4-diclorobenzene	mg/l	-	-	< 0.05	< 0.05	< 0.05	< 0.05	-	< 0.05
1,2,3-triclorobenzene	mg/l	-	-	< 0.4	< 0.4	< 0.4	< 0.4	-	< 0.4
1,2,4-triclorobenzene	mg/l	-	-	< 0.4	< 0.4	< 0.4	< 0.4	-	< 0.4
1,3,5-triclorobenzene	mg/l	-	-	< 0.4	< 0.4	< 0.4	< 0.4	_	< 0.4
Esaclorobenzene	mg/l	-	-	< 0.001	< 0.001	< 0.001	< 0.001	-	< 0.00
Conta Escherichia coli	UFC/100 ml	-	-	800	760	300	210	-	70

Tab. 5.121 Esito analisi chimico-fisiche

In tutti i monitoraggi effettuati non sono stati rilevati superamenti delle concentrazioni soglia di contaminazione (CSC).

	Progetto	Lotto	Codifica Documento	Rev.	Foglio 110 di 121
Doc. N.	INOR	11	EE2PEMB10B5001	Α	110 di 121

		RISUL	TATI MISURA DI POF	RTATA		
PARAMETRO	UNITA' DI MISURA	STAZIONE	I CAMPAGNA GENNAIO 2018	II CAMPAGNA APRILE 2018	III CAMPAGNA LUGLIO 2018	IV CAMPAGNA OTTOBRE 2018
Doutete	m³/s	AV-SO-SU-41	alveo in asciutta	*	*	alveo in asciutta
Portata	m ² /5	AV-SM-SU-42	alveo in asciutta	*	*	alveo in asciutta

Tab. 5.122 Risultati delle misure di portata del Canale diramatore Sommacampagna, fase AO - 2018

Il Canale diramatore Sommacampagna nella prima e nell'ultima campagna d'indagine del 2018 si presentava in asciutta. Sia ad aprile che a luglio 2018 non è stato possibile eseguire le misure di portata in condizioni di sicurezza.

5.10.2 Confronto dei risultati tra le stazioni di monte e valle

Si riporta di seguito la tabella dove si raffrontano i dati relativi alle stazioni di MONTE e di VALLE mediante il calcolo del valore dei Δ VIP.

Qualità Chimico-Fisica e Microbiologica Canale diramatore Sommacampagna													
	I CAMPAGNA			II	II CAMPAGNA			III CAMPAGNA			IV CAMPAGNA		
Parametri	GEI	NNAIO 20	18	М	AGGIO 20	18	L	UGLIO 201	8	ОТ	TOBRE 20	18	
	Monte	Valle	ΔVIP	Monte	Valle	ΔVIP	Monte	Valle	ΔVIP	Monte	Valle	ΔVIP	
рН	-	-	-	7,9	7,7	0,2	7,8	8,0	-0,2	-	7,8	n.d.	
Conducibilità	-	-	-	9,43	9,43	0,0	8,67	8,67	0,0	-	8,67	n.d.	
OD (% sat.)	-	-	-	9,19	8,90	0,3	5,12	5,12	0,0	-	5,04	n.d.	
SST	-	-	-	7,31	6,46	0,9	7,03	6,74	0,3	-	10,00	n.d.	
COD	-	-	-	10,00	10,00	0,0	10,00	10,00	0,0	-	7,60	n.d.	
TOC	-	-	-	10,00	10,00	0,0	10,00	10,00	0,0	-	10,00	n.d.	
				valore	valore		valore	valore		-			
Alluminio totale	-	-	-	fuori	fuori	n.d.	fuori	fuori	n.d.		8,67	n.d.	
				scala	scala		scala	scala					
Cromo totale	-	-	-	9,43	9,43	0,0	9,43	9,43	0,0	-	9,43	n.d.	
Azoto ammoniacale	-	-	-	9,71	9,71	0,0	9,14	9,43	-0,3	-	7,35	n.d.	
Cloruri	-	-	-	9,00	9,00	0,0	7,40	7,80	-0,4	-	7,40	n.d.	
Solfati	-	-	-	8,13	8,13	0,0	6,40	6,80	-0,4	-	5,86	n.d.	
Idrocarburi totali	-	-	-	9,79	9,79	0,0	9,79	9,79	0,0	-	9,51	n.d.	
Tensioattivi anionici	-	-	-	10,00	10,00	0,0	10,00	10,00	0,0	-	8,40	n.d.	
Tensioattivi non ionici	-	-	-	10,00	10,00	0,0	10,00	10,00	0,0	-	10,00	n.d.	
Conta Escherichia coli	-	-	-	8,22	8,27	-0,04	8,78	8,88	-0,10	-	9,30	n.d.	

Tab. 5.123 Calcolo ΔVIP tra le stazioni di monte e valle della qualità chimica e biologica del Canale diramatore Sommacampagna – fase AO - 2018

Parametri chimico-fisici e microbiologici

Le analisi chimico-fisiche e microbiologiche mostrano il buono stato chimico-fisico delle acque della roggia. I VIP calcolati sono generalmente medio-alti, indice di una qualità ottimale.

Dal calcolo dei Δ VIP non sono stati riscontrati superamenti della soglia di attenzione e/o intervento. Si segnala che per il parametro *Alluminio totale* nella seconda e nella terza campagna di monitoraggio i valori rilevati nelle stazioni di monte e di valle sono tutti fuori scala e quindi non è determinabile il valore di VIP.

^{* =} misura non eseguibile in condizioni di sicurezza

6 Conclusioni

6.1 Monitoraggio Parametri biologici

Delle stazioni totali previste dal PMA, nel corso dell'anno 2018 non è stato possibile effettuare le seguenti analisi:

- AV-PE-SU-23 (Rio Paolmano): IBE nella III campagna di monitoraggio, alveo in asciutta;
- AV-SO-SU-37 e AV-SO-SU-38 (Scolo Bulgarella): IBE nella I campagna di monitoraggio, alveo in asciutta;
- AV-SO-SU-39 e AV-SO-SU-40 (Scolo Bulgarella L.6.O.2): IBE nella I, nella II e nella IV campagna di monitoraggio, alveo in asciutta, ICMi in entrambe le campagne di monitoraggio, alveo in asciutta;

6.1.1 Indice sulla qualità biologica delle acque (I.B.E.)

Nelle stazioni per le quali è stato possibile effettuare il monitoraggio IBE sono stati ottenuti i seguenti risultati espressi mediante classi di qualità, riportate nella seguente tabella:

PUNTO CORSO D'ACOUA POSIZIONE IBE									
PUNTO	CORSO D'ACQUA	POSIZIONE	I campagna	II campagna	III campagna	IV campagna			
AV-PE-SU-20	FOSSO GIORDANO	MONTE	III	Ш	III	Ш			
AV-PE-SU-19	FOSSO GIORDANO	VALLE	V	V	IV-III	III			
AV-PE-SU-23	RIO PAOLMANO	VALLE	V	IV	-	V			
AV-PE-SU-25	RIO MANO DI FERRO (FONTANILE)	MONTE	V-IV	V-IV	IV	V			
AV-PE-SU-26	RIO MANO DI FERRO	VALLE	IV	IV	IV	IV			
AV-CN-SU-29	RIO BISAOLA	MONTE	II .	IV	111-11	II			
AV-CN-SU-30	RIO BISAOLA	VALLE	111-11	II	II	II			
AV-CN-SU-31	RIO TIONELLO	MONTE	V	IV	II	V			
AV-SO-SU-32	RIO TIONELLO	VALLE	11-111	III-IV	II	Ш			
AV-SO-SU-33	FIUME TIONE DEI MONTI	MONTE	III	Ш	H H	V			
AV-SO-SU-34	FIUME TIONE DEI MONTI	VALLE	IV-III	Ш	111-11	V			
AV-SO-SU-37	SCOLO BULGARELLA	MONTE	-	V	IV	III-IV			
AV-SO-SU-38	SCOLO BULGARELLA	VALLE	-	V	V-IV	IV			
AV-SO-SU-39	SCOLO BULGARELLA L.6.O.2	MONTE	-	-	V	-			
AV-SO-SU-40	SCOLO BULGARELLA L.6.O.2	VALLE	-	-	V	-			

Tab. 6.1 Riassunto risultati qualità biologica – indice IBE – fase AO – 2018

Per i rilievi della fase AO eseguiti nell'anno 2018 l'indagine relativa alla comunità macrobentonica ha evidenziato uno scadimento qualitativo significativo solo tra la stazione di monte e quella di valle del Fosso Giordano (periodi: primo e del secondo campionamento 2018); data l'assenza di cantieri attivi tale variazione è attribuibile a fattori esterni alle opere indagate e comunque limitata al primo semestre di indagina. Gli scadimenti di mezza classe riscontrati nel Rio Bisaola e nel Fiume Tione dei monti (I campagna), nel Fosso giordano, nel Fiume Tione dei monti e nello Scolo Bulgarella (IV campagna) risultano non significativi.

Altre variazioni si sono registrate in positivo nei vari CIS nel corso dell'intero periodo di monitoraggio, talvolta anche con oltre una classe di differenza, e sono attribuibili probabilmente alla natura stessa del corso d'acqua o ad apporti idrici esterni.

6.1.2 Valutazione della qualità delle acque mediante comunità diatomiche - indice ICMi

Nelle stazioni per le quali è stato possibile effettuare il monitoraggio ICMi sono stati ottenuti i seguenti risultati espressi mediante classi di qualità, riportate nella seguente tabella:

PUNTO CORSO D'ACQUA POSIZ		POSIZIONE	ICMi						
PUNTO	CORSO D'ACQUA	POSIZIONE	I campagna	II campagna	III campagna	IV campagna			
AV-PE-SU-20	FOSSO GIORDANO	MONTE		II		II			
AV-PE-SU-19	FOSSO GIORDANO	VALLE		II		II			
AV-PE-SU-23	RIO PAOLMANO	VALLE		IV		IV			
AV-PE-SU-25	RIO MANO DI FERRO (FONTANILE)	MONTE		T		Ш			
AV-PE-SU-26	RIO MANO DI FERRO	VALLE		Ш		III			
AV-CN-SU-29	RIO BISAOLA	MONTE		1		III			
AV-CN-SU-30	RIO BISAOLA	VALLE		II		II			
AV-CN-SU-31	RIO TIONELLO	MONTE		III		II			
AV-SO-SU-32	RIO TIONELLO	VALLE		III		III			
AV-SO-SU-33	FIUME TIONE DEI MONTI	MONTE		II		IV			
AV-SO-SU-34	FIUME TIONE DEI MONTI	VALLE		II		III			
AV-SO-SU-37	SCOLO BULGARELLA	MONTE		III		II			
AV-SO-SU-38	SCOLO BULGARELLA	VALLE		III		II			
AV-SO-SU-39	SCOLO BULGARELLA L.6.O.2	MONTE		-		-			
AV-SO-SU-40	SCOLO BULGARELLA L.6.O.2	VALLE		-		-			

Nel corso delle due campagne di monitoraggio previste gli unici scadimenti qualitativi si sono verificati nella II campagna nel Rio Mano di ferro e nel Rio Bisaola e nella IV campagna nel Rio Tionello; la variazione più rilevante si è registrata tra le stazioni AV-PE-SU-25 e AV-PE-SU-26 con due classi di differenza tra il monte ed il valle. Lo scadimento che ha interessato le stazioni AV-CN-SU-29 e AV-CN-SU-30 è stato di una classe così come quello registrato tra le stazioni AV-CN-SU-31 e AV-SO-SU-32.

Data l'assenza di cantieri attivi nel corso dei rilievi tale scadimento è attribuibile a fattori esterni alle opere da monitorare. In due casi si è registrato un miglioramento di una classe nel confronto monte/valle, nel Rio Bisaola e nel Fiume Tione dei monti per i rilievi della IV campagna.

6.1.3 Indice di funzionalità fluviale (IFF)

La metodica dell'indice di funzionalità fluviale è stata applicata sugli interi tratti fluviali compresi tra la stazione di valle e quella di monte.

Sulla base dell'applicazione dell'indice I.F.F. nei tratti che vanno da valle a monte delle infrastrutture in progetto, la condizione di funzionalità dei corsi d'acqua intercettati dal tracciato è risultata nella maggior parte dei casi mediocre

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 EE2PEMB10B5001 A 113 di 121

(livello di funzionalità pari ad una III classe), nel 34,7% dei tratti in destra idrografica e nel 39% dei tratti in sinistra. Secondariamente la situazione maggiormente rappresentata è la scadente (livello di funzionalità pari ad una IV classe), nel 34,1% dei tratti in destra idrografica e nel 32,6% dei tratti in sinistra.

La condizione di miglior funzionalità è stata riscontrata è stata la mediocre, mentre la condizione peggiore è stata la pessima (livello di funzionalità pari ad una V classe), rinvenuta nel 5,2% dei tratti indagati.

CT4710411	60000 014 6014	GIUDIZIO DI FUNZIONALITA'										
STAZIONI CORSO I	CORSO D'ACQUA	Sponda	- 1	1-11	Ш	11-111	III	III-IV	IV	IV-V	V	
AV-PE-SU-20	FOSSO GIORDANO	SX	0,0	0,0	0,0	0,0	6,3	9,0	29,2	0,0	55,4	
AV-PE-SU-19	FOSSO GIORDANO	DX	0,0	0,0	0,0	0,0	0,0	17,2	27,4	0,0	55,4	
AV-PE-SU-23	RIO PAOLMANO	SX	0,0	0,0	0,0	0,0	0,0	0,0	100,0	0,0	0,0	
AV-PE-3U-23	RIO PAOLIVIANO	DX	0,0	0,0	0,0	0,0	0,0	0,0	100,0	0,0	0,0	
AV-PE-SU-25	RIO MANO DI	SX	0,0	0,0	0,0	0,0	0,0	10,5	63,6	25,9	0,0	
AV-PE-SU-26	FERRO	DX	0,0	0,0	0,0	0,0	0,0	10,5	63,6	25,9	0,0	
AV-CN-SU-29 AV-CN-SU-30 RIO BISAOLA	SX	0,0	0,0	0,0	0,0	55,0	36,1	8,9	0,0	0,0		
	NIO BISAULA	DX	0,0	0,0	0,0	0,0	39,6	51,6	8,9	0,0	0,0	
AV-CN-SU-31	RIO TIONELLO	SX	0,0	0,0	0,0	0,0	66,4	5,8	25,4	2,5	0,0	
AV-SO-SU-32	RIO HONELLO	DX	0,0	0,0	0,0	0,0	66,4	0,0	31,1	2,5	0,0	
AV-SO-SU-33	FIUME TIONE DEI	SX	0,0	0,0	0,0	0,0	51,5	24,2	17,1	7,2	0,0	
AV-SO-SU-34	MONTI	DX	0,0	0,0	0,0	0,0	51,5	24,2	17,1	7,2	0,0	
AV-SO-SU-37	SCOLO	SX	0,0	0,0	0,0	0,0	0,0	26,3	64,8	0,0	9,0	
AV-SO-SU-38	BULGARELLA	DX	0,0	0,0	0,0	0,0	0,0	26,3	64,8	0,0	9,0	
AV-SO-SU-39	SCOLO	SX	0,0	0,0	0,0	0,0	0,0	0,0	100,0	0,0	0,0	
AV-SO-SU-40	BULGARELLA L.6.O.2	DX	0,0	0,0	0,0	0,0	0,0	0,0	100,0	0,0	0,0	

Tab. 6.2 Riassunto risultati di funzionalità - indice IFF - fase AO - 2018

6.2 Monitoraggio parametri chimico-fisici

Delle stazioni totali previste dal PMA, nel corso dell'anno 2018 non è stato possibile determinare la portata nei punti AV-PE-SU-23 (Rio Paolmano), AV-SO-SU-37 e AV-SO-SU-38 (Scolo Bulgarella) e AV-SO-SU-39 e AV-SO-SU-40 (Scolo Bulgarella L.6.O.2) in quanto alveo in asciutta. Dopo aver effettuato il calcolo dei VIP e corrispettivi ΔVIP, alcuni parametri sono risultati avere valori di VIP mediocri, in particolare ossigeno disciolto, solfati, alluminio ed Escherichia Coli. Tali valori ottenuti dalle analisi delle acque di alcuni corsi d'acqua possono essere considerati caratteristici dei corpi idrici indagati. Per l'ossigeno in saturazione per alcuni corsi d'acqua sono state riscontrate concentrazioni di ossigeno disciolto tali da rendere le acque sovrasature. Si precisa che la sonda al momento delle misurazioni risultava tarata poiché, quando esposta all'aria per verifica, ha restituito un valore del 100 % e che la condizione di sovrasaturazione risulta, su buona parte dei corsi d'acqua monitorati, abbastanza frequente. Sebbene in letteratura gli effetti dannosi della sovrasaturazione di ossigeno siano ampiamente dimostrati, è utile puntualizzare che ci si riferisce maggiormente a corpi idrici non influenzati da opere antropiche di regolazione del regime della portata e caratterizzati da velocità delle correnti estremamente basse o nulle (i.e. laghi, ecc.).

Infatti, in queste condizioni, fenomeni di eutrofizzazione possono innescare in un secondo momento la formazione di ambienti anossici e con alte concentrazione di sostanze tossiche. Al contrario, è noto che i regimi idrologici di

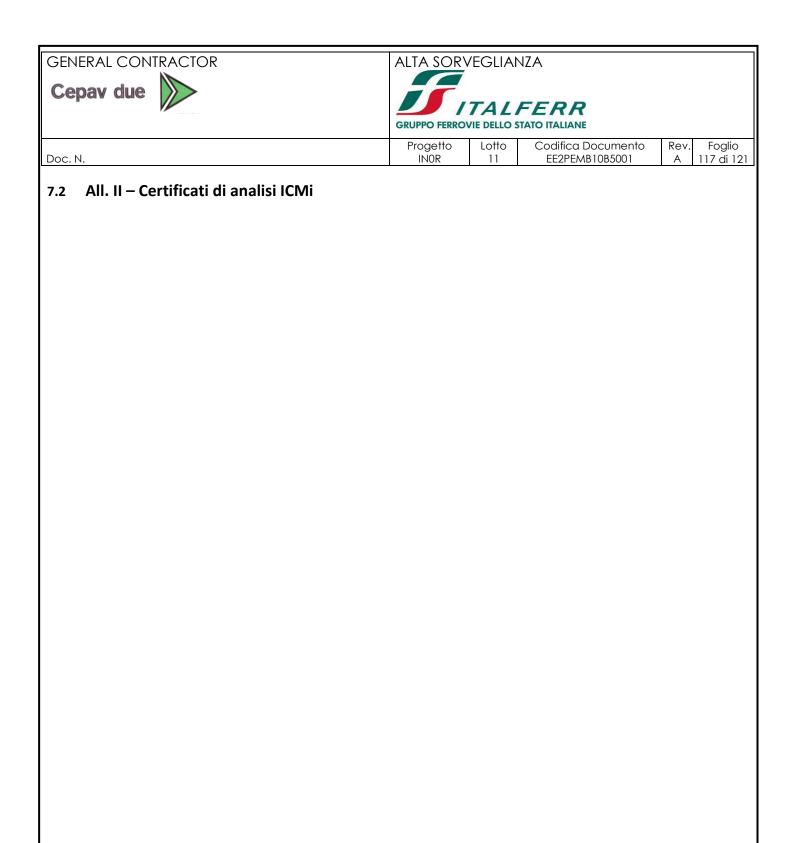
Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 11 EE2PEMB10B5001 A 114 di 121

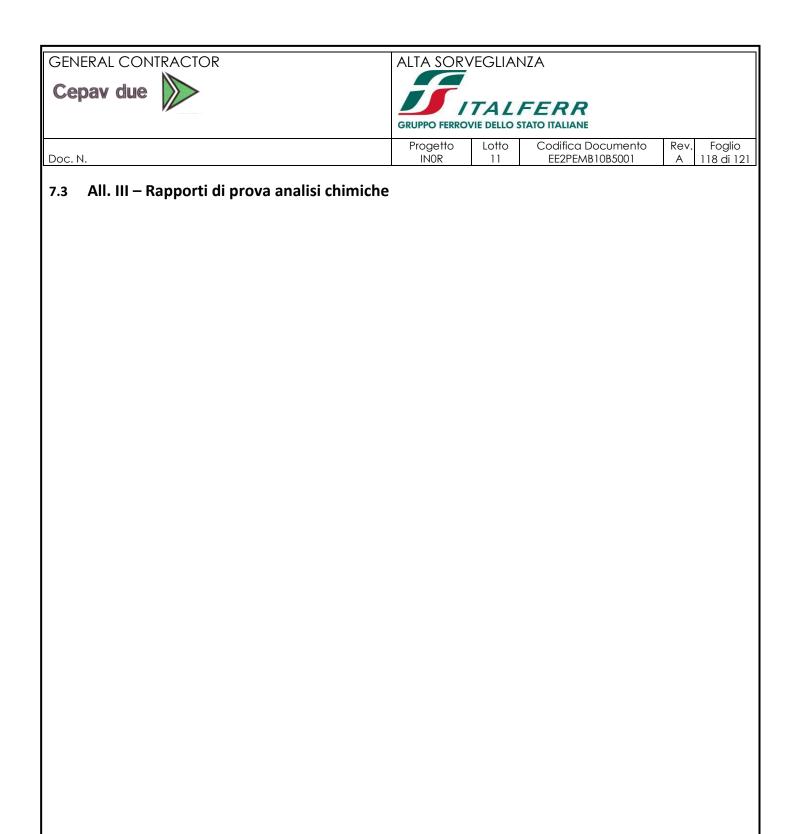
alcuni corsi d'acqua monitorati sono regolati artificialmente e che le caratteristiche idromorfologiche degli alvei variano in tratti relativamente brevi (poche decine di metri). Variazioni improvvise e repentine della portata possono provocare un aumento di concentrazione di ossigeno in quanto gli organismi produttori (ad es. le idrofite) riversano, prima di raggiungere un nuovo equilibrio col sistema, lo stesso quantitativo di ossigeno in una minore quantità d'acqua. Variazioni idromorfologiche quali profondità e larghezza dell'alveo, variazioni di attrito tra alveo e acqua e presenza di ostacoli sul fondo e/o in sospensione possono provocare variazioni di regime (passaggio da un regime laminare ad uno turbolento), salti idraulici e formazione di increspature e vortici che a loro volta possono causare fenomeni di mescolamento nell'interfaccia aria-acqua.

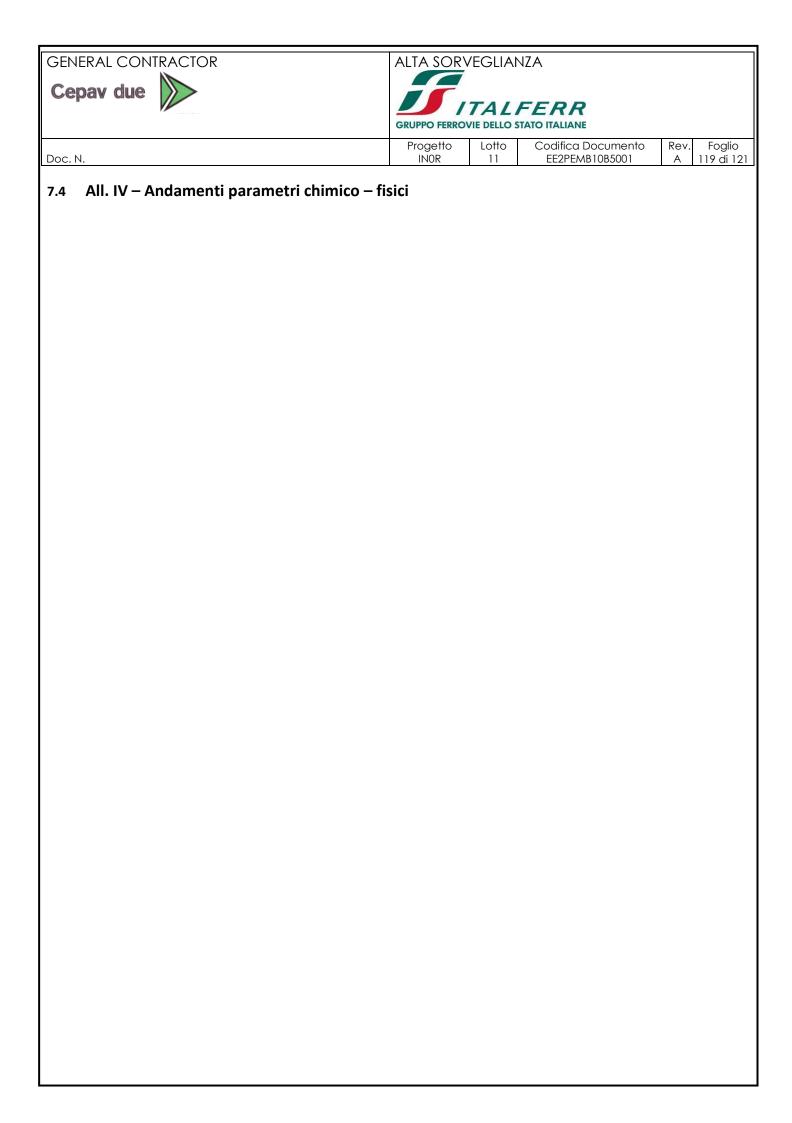
Nella tabella seguente sono riportati i superamenti della soglia di attenzione e/o intervento o i valori pari alla soglie di attenzione riscontrati nelle campagne di monitoraggio di ante operam.

CORPO IDRICO	PARAMETRO	Monitoraggio	VIP MONTE	VIP VALLE	ΔVΙΡ
	COD	I monitoraggio – Gennaio 2018	8,80	5,80	3,0
	Alluminio totale	IV monitoraggio – Ottobre 2018	4,20	1,04	3,2
	Solfati	I monitoraggio – Gennaio 2018	7,87	5,97	1,9
Fosso Giordano	Solfati	II monitoraggio – Maggio 2018	7,33	6,00	1,3
	Solfati	III monitoraggio – Luglio 2018	7,60	6,27	1,3
	SST	III monitoraggio – Luglio 2018	9,70	8,20	1,5
	SST	IV monitoraggio – Ottobre 2018	9,20	8,80 5,80 3,0 4,20 1,04 3,2 7,87 5,97 1,9 7,33 6,00 1,3 7,60 6,27 1,3 9,70 8,20 1,5	
	Alluminio totale	I monitoraggio – Gennaio 2018	8,67	6,80	1,90
Mano di Ferro	Alluminio totale	II monitoraggio – Maggio 2018	8,67	6,40	2,3
	Solfati	IV monitoraggio – Ottobre 2018	9,73	8,27	1,5
	Ossigeno disciolto	I monitoraggio – Gennaio 2018	5,92	4,07	1,9
Die Diesele	Ossigeno disciolto	II monitoraggio – Maggio 2018	7,52	5,77	1,8
Rio Bisaola	Tensioattivi anionici	IV monitoraggio – Ottobre 2018	10,00	8,80	1,2
	Escherichia Coli	II monitoraggio – Maggio 2018	7,90	5,63	2,27
	COD	I monitoraggio – Gennaio 2018	7,20	5,80	1,4
	COD	III monitoraggio – Luglio 2018	7,60	6,00	1,6
	Alluminio totale	I monitoraggio – Gennaio 2018	7,36	3,88	3,5
Rio Tionello	Alluminio totale	II monitoraggio – Maggio 2018	6,16	0,20	6,0
RIO HONEIIO	Alluminio totale	IV monitoraggio – Ottobre 2018	8,27	7,04	1,2
	Azoto ammoniacale	III monitoraggio – Luglio 2018	9,43	7,40	2,0
	Solfati	I monitoraggio – Gennaio 2018	5,37	4,31	1,1
	Escherichia Coli	II monitoraggio – Maggio 2018	7,90	5,63	2,27
Tione dei monti	Ossigeno disciolto	IV monitoraggio – Ottobre 2018	4,58	3,44	1,1
	Ossigeno disciolto	IV monitoraggio – Ottobre 2018	4,70	3,12	1,6
Canale Consortile Sona	TOC	IV monitoraggio – Ottobre 2018	7,21	4,70	2,5
	Tensioattivi non ionici	IV monitoraggio – Ottobre 2018	8,27	6,93	1,3
	Ossigeno disciolto	IV monitoraggio – Ottobre 2018	5,56	2,63	2,9
	COD	IV monitoraggio – Ottobre 2018	10,00	5,20	4,8
Coole Bulgers !!-	Alluminio totale	IV monitoraggio – Ottobre 2018	8,67	4,36	4,3
Scolo Bulgarella	Azoto ammoniacale	IV monitoraggio – Ottobre 2018	9,71	3,20	6,5
	Tensioattivi anionici	IV monitoraggio – Ottobre 2018	10,00	3,20	6,8
	Escherichia Coli	IV monitoraggio – Ottobre 2018	8,98	3,44	5,53

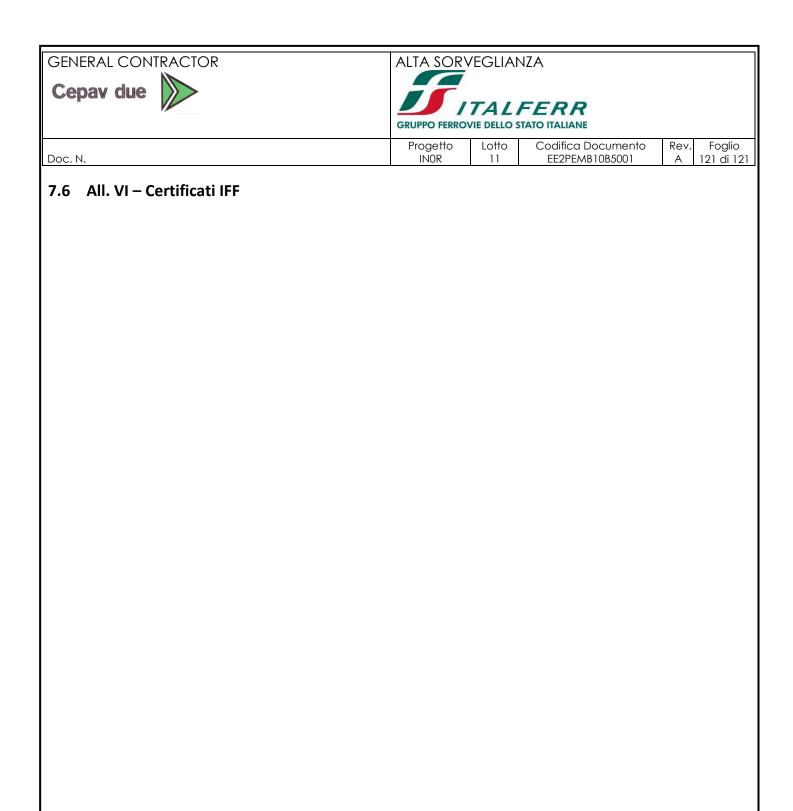
Tab. 6.3 Quadro sinottico delle anomalie riscontrate nel corso delle campagne effettuate per il monitoraggio ante operam




Per i corsi d'acqua monitorati oggetto della presente relazione sono stati rilevati numerosi superamenti delle soglie di attenzione e/o intervento. Alcune criticità sono rientrate nei monitoraggi successivi; quelle rilevate nel IV monitoraggio verranno monitorate nella prima campagna di corso d'opera. Data l'assenza di cantieri attivi nel corso dei rilievi tali variazioni sono da attribuire a fattori esterni alle opere da monitorare.



	7 A	llegati –	Certificati	di	ana	lisi
--	-----	-----------	-------------	----	-----	------


7.1 All. I – Certificati di analisi STAR_ICMi

