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ABSTRACT 

A novel model has been developed for the analysis and 
the evaluation of average vehicle emissions in a real 
driving cycle (emission factors) from data in an emission 
data base. The model assumes that emission variation 
can be explained by parameters determined from 
dynamic vehicle equation and by the frequency of 
acceleration events at different speed. Because  the 
number of resulting X-variables is large, and variables 
are correlated, a regression method based on principal 
components, the Partial Least Squares (PLS) method 
actually, has been adopted. In this paper, model 
potentiality is illustrated by an application to a case study 
taken from  the data base built within the UE V 
Framework Project ARTEMIS. Data are relative to tests 
performed under hot conditions with a sample of EURO 
III 1.4-2.0 l gasoline passenger cars. A set of real driving 
cycles was utilized as representative of urban, rural and 
motorway operating conditions detected in different 
European countries. Results for PLS model fit are good 
for CO2, less than sufficient for CO, HC and NOX; this 
last result,  mostly due to data spread out, is analyzed in 
the paper by estimating the percentage vehicle�s effect. 

INTRODUCTION 

Average emission factor models commonly used, like 
COPERT III developed in Europe [1], as well MOBILE6 
[2] and EMFAC [3] models developed in the United 
States, are based solely on the average trip speed to 
predict emissions. They are intended to evaluate 
emission inventory of a large road network, where 
average speeds are generally obtained by traffic 
assignment models. These macro-scale models cannot 
differentiate emission rates of trips with the same 
average speed but with different speed profile, thus they 
are not sensitive to variations of vehicle�s instantaneous 
speed and acceleration, which have a strong effect on 
emissions and fuel consumption [4]. 

The average emission factor model proposed in this 
paper attempts to improve the sensitivity of macro-scale 

emission factor models including acceleration related 
terms in the regression equation. The model is intended 
to predict the average emission factor relative to a 
driving cycle (DC), considering the emission data base 
collected within the UE V Framework Project 
�Assessment and reliability of transport emission models 
and inventory systems� (ARTEMIS) [5]. Emission data 
are relative to a collection of vehicles of different fuel, 
technology, homologation, and size, tested on a 
consistent scenario of real driving cycles. To explain the 
resulting emission variability, a hierarchical statistical 
approach has been adopted to analyze and predict the 
pattern of various emissions as a function of the 
composite set of parameters used to characterize a 
driving cycle [6]. 

METHODOLOGY 

The aim of research is to develop a statistical model 
based on emission measurements and concepts of 
mechanisms of emission production. A first 
multidimensional model was developed considering 
kinematic parameters generally used to characterize a 
driving cycle and the PLS regression method applied to 
build the prediction model [7]. Further study suggested to 
improve the statistical modeling approach by a deepened 
analysis of emission production mechanisms and of 
characteristics of emission measures [6]. The novel 
model presented here considers two potential sources of 
emission variation: the change of total exhaust mass 
produced in a driving cycle, the change of the distribution 
of the frequency of acceleration events at different 
speeds.  

Consequently, a first block of parameters was identified 
considering that exhaust mass is proportional to fuel 
consumption, which in turn can be obtained by the 
integral of instantaneous power spent by vehicle in the 
driving cycle. Starting by the dynamic vehicle equation, it 
can be shown that exhaust mass is a function of running 
mean speed (MV), mean of square speed (MV2), mean 
of cube speed (MV3), running time (T_RUNNING), mean 
of instantaneous values of product (a(t)•v(t)) when v(t)>0 
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and a(t)>0 (M_VA_POS). Moreover, idling time 
(T_IDLE), considers the emission production during 
idling time, and the reciprocal of driving cycle length 
(INVDIST) takes into account that unit emission mass 
(calculated as emission mass in a test divided DC�s 
distance and expressed in g/km) is to be predicted.  

Acceleration events are considered in the model by the 
joint empirical distribution of second by second 
instantaneous speed/acceleration {v(t),a(t)} of driving 
cycle. Hence, the second block of X-variables is obtained 
by the (cumulated) frequency of {v(t),a(t)} in each of forty 
two cells obtained considering the intersection of six 
speed classes and seven acceleration classes. Because 
frequencies are compositional data, to avoid bias in the 
estimates, they have to be centered respect to geometric 
mean and then  log-transformed, they are indicated as 
FS_V20a1, FS_V20a2,�, FS_V101a7 [8].  

Because emissions have positive values with not small 
coefficient of variations, and result generally distributed 
as a log-normal distribution, a log-transform is applied to 
emission data. 
Thus the following regression equations are defined  for 
the two blocks of variables and for each response Y (CO, 
CO2, HC, NOX expressed in g/km): 
 
 
 
 (1) 
 
  
  
 (2) 
 
where random noise ε is assumed to be a random 
variable normally distributed ε ~ N( 2,0 εσ ) 

Considering the number of X-variables, the most of 
which are correlated, it is convenient to utilize a 
regression method based on principal components (PC), 
which are latent variables function of original variables 
and orthogonal each other. In particular, the sparse 
matrix of data and the presence of missing values 
suggested to apply the Partial Least Square method and 
the NIPALS algorithm to estimate the regression model. 
Moreover, because response variables Y�s  may be 
correlated, a multivariate response Y (whose 
components are CO, CO2, HC, NOX) was considered 
and a multivariate PLS method applied [9,10]. 
 
Ultimately, regression equation becomes for each 
response component Y (CO, CO2, HC and NOX) and for 
each block : 

ε++++ = kk tctctcY ..ln 2211   (3) 

where it is given as a function of original variables xj 
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where c and w* are y-loadings and x-weights 
respectively. The number (k) of principal components tk 
to be retained in the model fit is determined by cross 
validation method [9,10]. 

To consider both the contributes of the two blocks in one 
model, because variables are separated into two 
conceptually meaningful blocks, a Hierarchical Multi-
block PLS method [11] is adopted. Following this 
approach, a set (t1, t2,�, tk) of principal components (X-
scores) is estimated separately for each block of 
variables, fitting a PLS base model to each block. Then, 
the super-block regression model (named top-model) is 
built, by applying the PLS regression of Y-variables  on 
super-scores made by the union of scores of the two 
base models. Thus the top model estimates the 
coefficients and predicted values of regression of Y on 
the full set of X-variables made of the two blocks. 
Mathematical details and estimation algorithms are 
presented in [11]. Finally, a flexible and comprehensive 
approach is obtained to analyze emission pattern and 
predict emission factors. In fact two PLS models are 
obtained at lower level (base models) showing the details 
of each block, and at the upper level the full regression 
relationship is modeled and predicted values estimated. 
Thus, in a data base analysis one can choose for each 
emission case study the model with the best results, 
among the two base models and the top model. 

 
EXPERIMENTAL CONDITIONS 

DRIVING CYCLES 

Emission data are relative to measurements performed 
under stabilized hot conditions, with driving cycles 
determined in the framework of the Artemis project and 
called ARTEMIS URBAN, ROAD and MOTORWAY, 
specifically each driving cycle is divided into sub-cycles 
and sub-cycle emission quantity is computed by the 
integral of instantaneous emission record over sub-cycle 
duration. The method of determination and detailed 
characteristics of driving cycles are reported in [12]. In 
the remainder a sub-cycle will be named as a driving 
cycle (DC). Then, emission data will refer to the following 
sub-cycles: Artemis � Motorway (4 sub-cycles Motor 1-
4), Artemis � Rural (5 sub-cycles Rural 1-5), Artemis � 
Urban ( 5 sub- cycles Urban 1-5). Each emission 
observation is the quantity related to each sub-cycle in 
the data base for a specific vehicle. 

 
FLEET SELECTION 

The case study refers to data of ARTEMIS data-base 
relative to a sample of Euro III homologation passenger 
cars with engine displacement in the range 1.4-2.0 l, all 
of them equipped with a three way catalyst. The list of 
models is shown in table 1. 

Make  Model 
ALFA ROMEO 156 J TS 2000 



 

 

ALFA ROMEO 156 1.6 
ALFA ROMEO 147 1.6 TNO 
ALFA ROMEO 147 1.6 TUG 
ALFA ROMEO 147 2.0 TWIN SPARK 16V 
ALFA ROMEO 147 1.6 
PEUGEOT 206 XS16S 
PEUGEOT 306 1.8 16V 
BMW 316I 
SAAB 95 ESTATE 2.0 
HONDA ACCORD 2.0I VTEC 
OPEL ASTRA CARAVAN 1.6 
TOYOTA COROLLA TS 
MAZDA DEMIO 
FORD FOCUS 
FORD FOCUS 1.6 16V AUTO 
VOLKSWAGEN GOLF VARIANT 1.6 5D 
RENAULT MEGANE 1.6 16V 
RENAULT MEGANE SCENIC 2.0 
FORD MONDEO 2.0 
NISSAN PRIMERA 2.0 CVT 
CHRYSLER PT CRUISER 
FIAT PUNTO 1.8 HGT 
RENAULT SCENIC 1.6 16S 
OPEL ZAFIRA 1.8 16V AUTO 

Table 1: Fleet selection. 

 

RESULTS 

A hierarchical PLS model was calculated, which implied 
to build the basemodel1 (exhaust mass model MG, the 
basemodel2 (speed/acc. distribution model MVA) and 
then the supermodel (topmodel MT). 

Results of model fit to data are reported in this 
paragraph. PLS estimates and diagrams were obtained 
by using Simca P © and SAS System© software.  

Diagnostics of block and super level models are reported 
in the tables (2-4), where percentage amount of 
explained variance R2Y and cross validated prediction 
variance Q2 are presented for the three models. R2Y 
and Q2 values are cumulated respect to PC�s retained in 
the model: 3 for MG, 6 for MVA, 2 for MT. The 
cumulated values of these indexes present good values 
only for CO2 emission, meaning that models explains 
more than 77% of emission variation. For other 
pollutants prediction is unsatisfactory (R2Y and Q2 ≈ 0.2) 
in both blocks (MG, MVA) and also in the Top Model 
(MT), even if a little improvement results for HC and 
NOx. 

Ln Emission MG.R2VY[3](cum) MG.Q2VY[3](cum) 
ln CO (g/km) 0,211758 0,202649 
ln CO2 (g/km) 0,776434 0,768253 
ln HC (g/km) 0,17297 0,163934 
ln Nox (g/km) 0,189783 0,171906 
Table 2: MG Summary Y overview. 

 

Ln Emission MVA.R2VY[6](cum) MVA.Q2VY[6](cum) 
ln CO (g/km) 0,236887 0,200313 

ln CO2 (g/km) 0,800415 0,773302 
ln HC (g/km) 0,201174 0,174054 
ln Nox (g/km) 0,229851 0,193914 
Table 3: MVA Summary Y overview. 

Ln Emission MT.R2VY[2](cum) MT.Q2VY[2](cum) 
ln CO (g/km) 0,229657 0,218149 
ln CO2 (g/km) 0,819361 0,815974 
ln HC (g/km) 0,195617 0,191941 
ln Nox (g/km) 0,210738 0,204275 
Table 4: MT Summary Y overview. 

To make a comparison with a classical multiple 
regression approach, based solely on average speed, a 
multiple regression model (GLM) based on quadratic 
polynomial equation of sub-cycle overall mean speed 
was fitted to same data set. GLM goodness of fit resulted 
much poorer than PLS ones, as one can see in table 5, 
especially for CO and HC. 

Emission R2 
CO (g/km) 0.068001 
CO2 (g/km) 0.636331 
HC (g/km) 0.082305 
NOx (g/km) 0.168392 
Table 5: GLM Summary Y overview.  

PLS predicted quantities as lnY were retransformed in 
original scale to get emission factors, taking into account 
the retransformation bias [13] 

Figures 1-4 report observed data (gray dot), PLS (blue 
rectangle) and GLM (red diamond) predicted data of 
emissions versus cycle mean speed. In particular, one 
can observe the large spread out of experimental data 
used to fit the regression model, the trend detected by 
the GLM model for the specific DC (blue continuous 
curve) and the predicted values obtained by the PLS 
model (red broken curve). Overall trend of PLS and GLM 
agreed,  PLS predicted values follow the sharp-toothed 
pattern of emissions versus average speed, being 
capable to take into account the peculiar effect of each 
driving cycle, explained by other variables besides 
average speed. Thus in some cases predicted values 
can be different for DC�s  having  similar average speed. 
Moreover, log-predicted values, when retransformed, 
tend to geometrical mean of observations, which is less 
influenced by extreme observed values than arithmetical 
mean, to which GLM predicted values tend. This is better 
outlined for CO2 (figure 2), where emission variance due 
to driving cycle effect (and explained by model) is 
relevant respect to residual variance. Different patterns 
result for different emissions: CO2 and NOx show a 
decreasing trend with average speed, from urban to 
motorway DC�s, CO shows an opposite trend, while HC 
shows quite a symmetric trend with minimum values for 
intermediate speed (rural DC�s). 
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Figure 1: Comparison between experimental data, PLS 
and GLM predicted CO emissions versus MV (km/h) 
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Figure 2: Comparison between experimental data, PLS 
and GLM predicted CO2 emissions versus MV (km/h) 
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Figure 3: Comparison between experimental data, PLS 
and GLM predicted HC emissions versus MV (km/h) 
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Figure 4: Comparison between experimental data, PLS 
and GLM predicted NOx emissions versus MV (km/h) 

Results of models can be analyzed in the terms of 
principal components and variables, to show the  model 
capability into explaining emission trends, irrespectively 
of goodness of fit, dependent on the particular case 
study. 
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Figure 5: Coefficient overview of MT model. 

In the figure 5, where the coefficients of top model are 
reported, the relative weight of block principal 
components can be recognized for each emission. It 
results that for CO, CO2 and NOX the first two 
components are more important, whereas for HC the 
second PC is the most important one. The two blocks 
have similar weights in the model for this case study.  

Figure 6 (diagram of  y-loadings (c) and x-weights (w*) 
for the first two PC�s) show the relations among the 
variables of the block 1 (model MG). The representation 
of observations (labeled by the corresponding driving 
cycles) in the principal components plane is shown in the 
figure 7. It can be argued that CO2 and NOX are 
positively related with TIDLE and INVDIST, which have a 
positive correlation with t1 and  characterize urban DC�s 
(figure 7). Negative relations result  with variables (MV, 



 

 

MV2, MV3, T_RUNNING, M_VA_POS) that characterize 
motorway and rural driving cycles. Similar relations but 
with opposite sign result for CO. HC resulted explained 
only by the second component t2, and thus   positively 
related  to idling time (TIDLE), and with a lower weight to 
INVDIST, MV3 and M_VA_POS. As a consequence, 
predicted HC are higher for DC�s Urban 3 and motorway 
cycles, independently from mean speed.   
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Figure 6: Superimposed PLS loadings of Y and X in MG 
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Figure 7: Score plot of t1 vs t2 - MG. 

Relations between emissions and block 2 X-variables 
(speed/acceleration distribution) can be recognized in 
figure 8, where w*,c diagram of model MVA is reported. 
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Figure 8:Superimposed PLS loadings of Y and X in MVA 

The plot of first two principal components (t1,t2) 
estimated by MVA  is shown in figure 9.  
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Figure 9: Score plot of t1 vs t2 - MAV. 

Considering both figures, 8 and 9 we note a 
homogeneous distribution of driving cycles respect to 
speed/acceleration class. CO2 and NOX emissions 
result positively correlated (higher values) with 
speed/acc. classes identifying urban DC�s, negatively 
(lower values) with variables characterizing motorway 
DC�s. CO has an opposite trend, HC results positively 
correlated to the second PC indicating higher values for 
urban and motorway, lower values for rural DC�s. Results 
are coherent with those obtained by model MG. 

 

VEHICLE EFFECT 

The analysis of results has shown that for CO, HC and 
NOX emission variability explained by regression model 
is very low. This is well represented in the figure 10, 
where lnCO observed data are reported respect to 
values predicted by MG. The variance explained by the 
model is only about 21% of total variance. In the figure it 
is evident the large variation of emission data 
corresponding to the value predicted by model for each 
driving cycle. The spread out of data can be mostly 
explained by the peculiar effect of each individual vehicle 



 

 

on emission. This is the summation of the effects of 
physical parameters like vehicle weight, engine 
displacement and max power, of (sometime hidden) 
technological characteristics like electronic control 
strategy of engine and exhausts gas treatment system, 
typical for a vehicle model, plus obviously the effect of 
the status of specific individual related to production 
variability and mileage.  

Thus, a question arises in the prediction of emission 
factors about which sample of vehicles and emission 
data should be considered as representative of the 
specific class, in this case of EUROIII 1.4-2,0 l gasoline 
passenger cars. The answer is a specific matter and is 
above the limits of present paper. However, a useful 
information to achieve in this analysis is the weight that 
each vehicle�s effect has respect to the overall mean. 
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Figure 10: MC-Observed vs predicted values of lnCO. 

To this end, a new model (MGD) was built introducing in 
the model MG a dummy variable Dj (0,1) j=1,Nv (Nv is the 
number of vehicles) for each vehicle, which estimates 
the effect of vehicle respect to the general mean, 
besides the effect of driving cycle estimated by 
continuous variables. The regression equation of MGD 
model takes the form of:  
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Figure 11: MGD Observed vs predicted values of lnCO. 

Ln Emission MCD.R2VY[6](cum) MCD.Q2VY[6](cum) 
ln CO (g-km) 0,69863 0,630737 
ln CO2 (g-km) 0,888078 0,835882 
ln HC (g-km) 0,594939 0,528908 
ln NOx (g-km) 0,573228 0,501927 
Table 6: MGD Summary Y overview  

Considering vehicle effect in the model by the 
introduction of vehicle dummy variables increases the 
variance explained by model, significantly for CO, HC 
and NOX, as it results from table 6 and from figure 10 
compared to figure 11, which refer to same observed 
data. 

It is possible to calculate the percentage effect of each 
vehicle model on emission factors expressed in original 
scale (g/km) on the basis of coefficients and prediction 
errors estimated by PLS model for dummy variables, as 
it is shown in table 7 and fig. 12 [13]. It results that there 
are few vehicles which present values significantly 
different from others; for CO two vehicle models are 
extremely critical.  

Vehicle Model p̂  CO 

 

p̂  CO2 
 

p̂  HC 
 

p̂  NOx 
 

156 J TS 2000 -70,435 8,627 242,848 -7,843 
147 1.6 TNO -25,646 4,909 -51,376 26,934 
147 1.6 TUG -50,736 15,072 -67,784 0,513 
147 2.0 TS 16V -89,380 14,930 74,140 2,124 
147 1.6 4D -64,636 4,568 77,194 -81,081 
156 129,920 -5,286 239,626 74,448 
206 XS16S -54,486 -15,959 -58,308 33,674 
306 1.8 16V -79,735 -8,372 18,971 -56,003 
316I -31,231 -5,177 -15,203 -57,068 
SAAB 95 -86,589 8,112 -47,183 -86,864 
ACCORD 2.0I TEC 230,624 -2,812 -53,146 -62,302 
ASTRA CARAVAN -17,724 -25,608 -93,755 -65,406 
COROLLA TS 244,629 14,872 44,270 90,606 
DEMIO 648,147 -11,269 68,951 -58,241 
FOCUS 195,582 -1,303 50,092 245,987 
FOCUS 1.6 16V 15,569 -10,748 -52,728 -58,410 
GOLF VAR. 1.6 -86,283 -28,201 -15,991 -35,877 
LAGUNA II 1.616V -73,572 -4,280 -18,403 143,392 
MEGANE 1.6 16V -91,009 -21,236 -72,323 -38,000 
MEGANE SCE. 2.0 -71,811 -21,183 -63,369 77,434 
MONDEO 2.0 89,295 -0,440 -24,214 59,438 
PRIMERA 2.0 CVT -92,754 -3,358 -80,898 -3,169 
PT CRUISER 79,252 7,250 -24,593 -11,333 
PUNTO 1.8 HGT -91,623 1,162 -27,089 -28,369 
SCENIC 1.6 16S -56,207 -4,508 -32,954 107,525 

εβ +++++

+++++=

∑
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ZAFIRA 1.8 16V 851,653 -33,931 95,852 -55,776 
Table 7: Estimate vehicle percentage effect. 
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Figure 12: Radar plot of estimate vehicle percentage 
effect on CO emission. 

 

CONCLUDING REMARKS 

A novel average emission model has been developed 
which can consider the effect of transient modes on 
emissions. To improve predictability and analysis of 
results a hierarchical multi block approach was utilized. 
The application of model to a case study has illustrated 
the potentiality of the approach. In this case study the 
vehicle effect is more relevant than driving cycle effect 
for CO, HC and NOX. Thus a not good fit to data results, 
both for PLS and average speed model, whereas for 
CO2 fit is good. This result is explained in the paper by 
the individual vehicle�s effect, whose percentage impact  
on different emissions general mean is estimated.. This 
kind of analysis should be considered when emission 
factors are calculated by large data bases, considering 
the fact that vehicle composition of data bases generally 
do not reflect the on road fleet composition, which 
obviously is varying for different geographic areas.  
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