TFEIP Expert Panel on Transport, Milan, March 23, 2007
Relationship between car mileage and length of service: influence on atmospheric emission assessment

Ing. Stefano Caserini ${ }^{1}$, Cinzia Pastorello ${ }^{2}$, Simonetta Tugnoli ${ }^{3}$

1- ARPA Lombardia, Settore Aria e Agenti Fisici, Viale F. Restelli, 3/1-20124 Milano s.caserini@arpalombardia.it

2 - ENEA, PROT INN section - Via Martiri di Monte Sole 4-40129, Bologna - Italy
3- ARPA Emilia Romagna - Ingegneria Ambientale, Vicolo Carega, 3, 40121 Bologna

Aim of the work

- Assessment of cars mileage as a function of their length of service
- Importance of the relationship between mileage and age on atmospheric emission assessment.

Mileage of vehicles is important because is involved in traffic emission assessment

Emissions $[\mathrm{g} / \mathrm{y}]=$
Emission Factor [g/km] \times
Number of Vehicles [veh.] \times
Mileage per Vehicle [$\mathrm{km} / \mathrm{veh} . / \mathrm{y}$]
"the authors have the impression that the distribution of mileage in driving conditions (urban, rural, highway) and the respective average travelling speeds are those variables for which most attention should be given in most of the cases."

Copert IV methodology, 2006
Relative differences in mileage for different types of vehicles are important because emission factors are highly dependent on vehicle age (legislative type: Euro $0 \ldots$ euro IV, etc.).

Total mileage came from fuel balance Mileage degradation is an assumption

Data available

- Data collected during the monitoring campaign aimed at controlling the vehicle exhausted gas
- Vehicle exhausted gas control are mandatory for vehicle older than 4 years (≤ 1999)
- Are available data on:
- Age (or lenght of service) - Number of years of vehicles utilization since its first registration.
- km driven by the car: read on the mileometer
- QA /QC (considered mileage between the 1° and 99° percentile)
- Milan province: 2400 data of vehicle registered between 1986 and 1999.

- Ferrara province:
82.000 data between 1963 and 1999

Cumulative Average Mileage

Cumulative Average Mileage of vehicles with k years of service
$\mathbf{C A M}_{k}$, number of km driven after k years from their first registration. This mileage could be derived from data observed in the vehicle mileometer.

This measure is uncertain for old vehicles, due to the past use of mileometers with only 5 numerals, that measure a maximum cumulative mileage of 99.999 and then restart counting.

Results: CAM

Increase in the $\%$ of mileage $<100.000 \mathrm{~km}$: influence of mileometers with 5 numerals

Annual Mileage

Annual Mileage

AM, average number of km driven in a year by a vehicle.
This mileage could be assessed by the difference of two mileometer measurements, in the same day of two subsequent years.
i.e.
$31 / 12 / 2003=152.000 \mathrm{~km}$
$31 / 12 / 2004=137.000 \mathrm{~km}$

Annual Mileage $=15.000 \mathrm{~km}$

Average Annual Mileage
 of vehicles with k years of service

Average Annual Mileage of vehicles with k years of service
$\mathbf{A A M}_{\mathbf{k}}$: Amount of km driven each year by vehicles of age k , with the hypothesis of equal mileage in every year of their service. This mileage could be assessed by the ratio between total km driven $\left(\mathrm{CAM}_{\mathrm{k}}\right)$ and vehicle age (k):

$$
\mathrm{AAMk}=\mathrm{CAM}_{\mathrm{k}} / \mathrm{k}
$$

i.e.

Cumulative average mileage in $1999=150.000 \mathrm{~km}$ Vehicle Age: $=15$

$$
\text { Annual Mileage }=10.000 \mathrm{~km}
$$

Real Annual Average Mileage

of vehicle with k years of service and j years as a maximum length of service

Real Annual Average Mileage of vehicle with k years of service

 and j years as a maximum length of service : $\mathbf{R A A M}_{\mathrm{jk}}$Average number of km driven by vehicles with k years of service and j years as a maximum length of service

This is the value needed for traffic emission assessment, where we have to assign at each Euro - category their real mileage

RAAM could not be calculated by the difference between the CAM of two subsequent years: CAM (Cumulative Average Mileage) is not always growing with age.

In other words, vehicles with very higher length of service could have lower CAM than younger vehicles, because when high length of service is reached, vehicle are less used.

Cumulative Average Mileage

of vehicles with k years of service and j years as a maximum length of service

Cumulative Average Mileage of vehicles with k years of service and j years as a maximum length of service $\mathbf{C A M}_{\mathbf{j k}}$

As later explained, the variation of $\mathrm{CAM}_{\mathrm{jk}}$ respect to the average value $\mathrm{CAM}_{\mathrm{k}}$ is greater if vehicles have a different development in the growth of cumulative mileage for different maximum years of service
$\mathrm{CAM}_{\mathrm{jk}}$

Cumulative Average Mileage - CAM $_{\mathrm{jk}}$

$$
\mathrm{CAM}_{\mathrm{jk}}=\mathrm{a}_{\mathrm{j}} \cdot \mathrm{k}^{2}+\mathrm{b}_{\mathrm{j}} \cdot \mathrm{k}
$$

$\mathrm{CAM}_{\mathrm{k}}$, cumulative average mileage
$\mathrm{k}=$ vehicle age (and year in wich mileage is assessed);
$j=$ maximum age reached by the vehicle $(j \geq k)$;
$\mathrm{a}, \mathrm{b}=$ coefficients $(\mathrm{a}<0)$

Cumulative Average Mileage - CAM $_{\mathrm{jk}}$

$\mathrm{k}=$ vehicle age (and year in wich mileage is assessed);
$j=$ maximum age reached by the vehicle $(j \geq k)$;

Conclusions

The assessment of real annual mileage has an influence on emission assessment

The contribution of Euro 0 vehicle on total PM and NOx emission decrease

The contribution of Euro III vehicle on total PM and NOx emission increase

