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A B S T R A C T

Human recreation can negatively affect wildlife, particularly on weekends when human activity is highest (i.e.,
the weekend effect). Much of what we understand about the weekend effect is based on research conducted on
diurnal species, which have greater temporal overlap with humans. Because nocturnal species generally avoid
times when humans are active, they are likely less affected by anthropogenic activity on weekends. Our objective
was to test the weekend effect in relation to the degree of nocturnality of mammals in a recreational area. We
predicted that as nocturnality increased, the effect of human activity would decrease. To address our objective,
we placed 50 remote cameras along the Diamond Fork River in Utah from January to June 2015. We found that
three out of the four focal species supported our predictions. Mule deer (crepuscular) reduced activity
throughout our entire study area during weekends and avoided campgrounds. Beavers and mountain lions (both
nocturnal) did not negatively respond to increased human activity. Raccoons (nocturnal) reduced activity during
weekends, but only within campground areas. Our findings indicate that as the temporal overlap increases
between wildlife and humans, so does the influence that humans have on wildlife.

1. Introduction

Human recreation has become a threat to many species of wildlife
(Benitez-Lopez et al., 2010; Larson et al., 2016). Increasing human
populations will likely lead to higher frequencies of recreational ac-
tivities, resulting in increased interactions with wildlife (Martineau
et al., 2016; Marzano and Dandy, 2012). Human-wildlife interactions
can alter wildlife behavior, which can lead to increased stress levels,
missed foraging opportunities, reduced reproductive success, avoidance
of certain habitats, and increased mortality (Longshore et al., 2013;
Martin and Réale, 2008). Mitigating and managing the potential ne-
gative effects resulting from human-wildlife interactions will be a
continual challenge for wildlife conservation and human recreation as
populations of humans increase and encroach on wildlife habitat
(Krausman et al., 2008).

Outdoor recreational areas near urban settings are ideal locations
for testing human-wildlife interactions (Ladle et al., 2016; Ruhlen et al.,
2003). Recreational areas near cities are likely to experience the
greatest increase in human activity because of proximity and con-
venience, due to both distance and well developed road networks that
enhance ease of access. Yet, increases in human activity are likely
periodic in nature, most commonly occurring during weekends (Ladle
et al., 2016; Longshore et al., 2013; Ruhlen et al., 2003). Due to the

influence that humans have on wildlife (Kays et al., 2016; Martineau
et al., 2016; van Doormaal et al., 2015), behavior of wildlife may differ
between “busy” weekend periods and relatively “quiet” weekday per-
iods (i.e., the weekend effect; Lafferty, 2001; Longshore et al., 2013;
Stalmaster and Kaiser, 1998). However, the weekend effect may dif-
ferentially affect diurnal and nocturnal wildlife based on contrasting
patterns of activity relative to human activity.

Diurnal species may be particularly sensitive to increased activity of
humans on weekends due to greater temporal overlap with humans
(Longshore et al., 2013; Roy et al., 2014), whereas nocturnal species
may avoid periods when humans are most active. The majority of re-
search that has evaluated support for the weekend effect hypothesis has
primarily focused on diurnal species (Stalmaster and Kaiser, 1998;
Tadesse and Kotler, 2012; Tarjuelo et al., 2015), with much less at-
tention towards crepuscular and nocturnal species. While most of the
studies on diurnal species support the weekend effect, the general ap-
plicability of this hypothesis to crepuscular and nocturnal species is not
as clear. For example, when human activity was high on weekends,
some crepuscular and nocturnal species were less active while others
became more active (Barrueto et al., 2014; Carrillo and Vaughan, 1993;
Jacobson and Lopez, 1994). Given the continual increase of the global
human footprint (Venter et al., 2016), developing a better under-
standing of the periodic influence that humans may have on the
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behavior of crepuscular and nocturnal wildlife will allow us to better
manage the shared use of recreational areas (Kays et al., 2016; Young
et al., 2005).

Our objective was to test the weekend effect hypothesis in relation
to the degree of nocturnality of mammals in a recreational area near a
city. Although humans are primarily diurnal, their activities in recrea-
tion areas can also be crepuscular. Therefore, we predicted that tem-
poral overlap with humans would cause crepuscular species to decrease
in activity on weekends, particularly in campground areas where
human activity is concentrated. Alternatively, nocturnal species have
little to no temporal overlap with humans. Thus, we predicted that
nocturnal species would not reduce activity in response to increased
human activity during weekends (Barrueto et al., 2014; van Doormaal
et al., 2015). To test our predictions, we used remote cameras to
monitor a recreational area where humans, crepuscular, and nocturnal
mammals were common. We then evaluated diel (daily) activity pat-
terns of mammalian wildlife and quantified their activity levels in re-
sponse to changes in levels of human activity.

2. Methods

2.1. Study area

We conducted this study along the Diamond Fork River located in
the Wasatch Mountain Range in central Utah (40° 1′42.04″ N 111°
30′3.70″ W). The Diamond Fork area is a popular location among re-
creationists because it offers a variety of activities year-round (e.g.,
fishing, camping, hunting, hiking, etc.) and is relatively close to urban
areas (12 km from nearest city). Diamond Fork is located within a small
canyon, branching off from the larger Spanish Fork Canyon. Vegetation
characteristics of the Diamond Fork area included maple (Acer spp.),
oak (Quercus spp.), juniper (Juniperus spp.), serviceberry (Amelanchier
alnifolia), aspen (Populus tremuloides), and cliffrose (Purshia stans-
buriana). Elevation across our study area ranged from 1514 to 1609 m.
Temperatures during our study ranged from −13.1 to 32.2 ͒C (mean
temperature of 7.9 ͒C). During our study, there was a total of 15.13 cm
of precipitation (MesoWest, Bureau of Land Management & Boise
Interagency Fire Center).

2.2. Data collection

From January to June 2015, we placed 50 Reconyx PC900 cameras
(Reconyx, Inc., Holmen, WI) along 12 km of the Diamond Fork River
(spaced approximately every 250 m). We positioned cameras approxi-
mately 40 cm off the ground and attached them to metal posts. Each
camera was programmed to record two photographs per trigger with a
30 s quiet period. We checked cameras every two weeks to perform
camera maintenance (if needed) and to remove any obstructions (e.g.,
vegetation) from the camera’s view.

We used Exifer v.2.1.5 (www.friedemann-schmidt.com/software/
exifer) to extract file paths and date/time stamps from each image. We
then created a Microsoft Access database for photo identification with
the file paths and date/time information for each image. We classified
animals in the photographs to the species level. After photo identifi-
cation, we compiled species photo sequences into independent visit
events separated by 30 min (Hall et al., 2016). All other photographs
that occurred within the same visit were consolidated to a single visit.
We determined the diel activity patterns of each species by using the
time associated with each visit and categorized each species as cre-
puscular or nocturnal based on their diel activity.

To account for differences in vegetation characteristics between
sites, we used Landscape Fire and Resource Management Planning
Tools (LANDFIRE) data provided by the U.S. Department of Agriculture
Forest Service and the U.S. Department of the Interior. LANDFIRE is a
vegetation classification derived from LANDSAT imagery with a spatial
resolution of 30 m. Vegetation height was defined as vegetation

0–0.5 m, 0.5–1 m, 1–3 m, shrubs above 3 m, Trees 5–10 m, Trees
10–25 m, and sparse vegetation using LANDFIRE data. With this in-
formation, we were able to define the dominant vegetation height
within each individual site (defined as within 30 m of the camera lo-
cation).

2.3. Statistical analysis

We used a Kruskal-Wallis and a Dunn’s post hoc test to determine if
there were differences in anthropogenic activity between weekdays and
weekends. We defined “weekdays” as Monday through Thursday and
“weekends” as Friday through Sunday (Barrueto et al., 2014; Moore
and Seigel, 2006; Ruhlen et al., 2003) with the exception of three
Mondays due to national holidays resulting in uncharacteristic long
weekends (Ladle et al., 2016). To account for the overnight presence of
humans in designated camping areas, we included a binary “camp-
ground” covariate. “Campground” sites were considered a categorical
covariate (0 = non-campground, 1 = campground) and consisted of
sites S00–S20 (approximately 40% of our study area) as these camera
locations were found within the designated camping areas of a national
forest campground.

We used a two-stage modelling approach to determine if increased
human activity on weekends influenced mammalian wildlife (Morrison
et al., 2014). Given our zero-heavy data (characteristic of camera
trapping studies), we used generalized linear mixed models with a zero-
inflated distribution. In stage one, we determined the best environ-
mental variables to use for each species at each camera location. We
evaluated environmental variables such as vegetation height, daily
temperature (maximum, minimum, and average), and the percentage of
moonlight emitted during nighttime hours (to account for potential
differences on activity of nocturnal species during moonlit nights). We
also added camera location and Julian day as random effects to help
account for re-sampling occurring at the same sites across days (Ladle
et al., 2016). Using AIC model selection, we evaluated model perfor-
mance and ranked competing models using AICc values and model
weights (Burnham and Anderson, 2002). We considered models to be
competing if they were within 2.0 ΔAICc of each other.

In stage two, we created baseline and main effect models. Based on
the varying quantities of human photos, depending on the day of the
week, we categorized the days as either weekday or weekend and used
this as our main effect variable. These categories corresponded to “low”
(weekday) and “high” (weekend) human activity (George and Crooks,
2006; Ladle et al., 2016; Longshore et al., 2013). Our baseline habitat/
environmental model consisted of precipitation and the most compe-
titive vegetation and temperature variables from stage one (see Tables 1
and 2) (Morrison et al., 2014). We then created main effect models that
were identical to the baseline model, except that they included
weekend, campground, and weekend*campground (to account for the
potential interaction of high human activity in campgrounds on
weekends) variables. For mammals that are generally considered prey
(e.g., mule deer [Odocoileus hemionus]), we included the occurrence
(number of photos/day) of carnivores (coyotes [Canis latrans], bobcats
[Lynx rufus], and mountain lions [Puma concolor]) as covariates to ac-
count for potential behavioral changes due to presence of predators
(Berger, 2007; Krishna et al., 2016). We then performed model selec-
tion to determine top models for mammalian wildlife following the
same evaluation criteria from stage one. We averaged competing top
models within 2.0 ΔAICc to acquire beta coefficients. This approach
allowed us to compare the relative importance of the weekend effect on
the activity of mammals after controlling for environmental factors. We
used R package “glmmADMB” to run linear mixed effects models
(http://glmmadmb.r-forge.r-project.org/). To test for the occurrence of
spatial autocorrelation (i.e., lack of independence) between cameras we
used Moran’s I spatial autocorrelation analyses in ArcGIS Pro (version
1.4, Environmental Systems Research Institute, Redlands, CA).
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3. Results

In 6850 camera days, we recorded a total of 46,529 pictures, of
which, 21,508 pictures contained human and non-human mammals.
We documented 11,665 pictures of humans (representing the most
pictures for a single species in our study) and 1565 pictures of domestic
dogs (C. familiaris). We found a difference in human activity between
individual days of the week (H= 106.07, df= 6, p < 0.001) and post
hoc analyses revealed a significant increase in human activity on
weekends (Friday to Sunday) compared to weekdays (Monday to
Thursday; Fig. 1). We also captured 8119 images of mammalian wildlife
representing 17 species. In decreasing order of species captured, non-
human mammals included: mule deer, American beaver (Castor cana-
densis), northern raccoon (Procyon lotor), mountain lion, mountain
cottontail (Sylvilagus nuttallii), American mink (Neovison vison), red fox
(Vulpes vulpes), striped skunk (Mephitis mephitis), red squirrel (Ta-
miasciurus hudsonicus), coyote, moose (Alces alces), chipmunk (Tamias
spp.), elk (Cervus elaphus), muskrat (Ondatra zibethicus), yellow-bellied
marmot (Marmota flaviventris), bobcat, and North American porcupine
(Erethizon dorsatum) (Fig. 2).

Despite the number of species documented, we only had sufficient
data to conduct statistical analysis for four species. Mule deer was the
most common species in our study (56% of all non-human mammals),

Table 1
Model Selection results assessing the effects of vegetation variables on the daily activity of
mule deer (Odocoileus hemionus), beavers (Castor canadensis), northern raccoons (Procyon
lotor), and mountain lions (Puma concolor). Data were collected from the Diamond Fork
Area in central Utah, USA from January to June 2015.

Model K LL ΔAICc wi

Mule Deer
Null (intercept with random effects) 4 −3101.52 0.00 0.44
Trees 5–10 m 5 −3101.38 1.72 0.19
Shrubs 3 m 5 −3101.40 1.76 0.18
Vegetation 0.5–1 m 5 −3101.45 1.86 0.18
Trees 10–25 m 5 −3101.47 1.90 0.17
Vegetation 1–3 m 5 −3101.51 1.98 0.16
Vegetation 0–0.5 m 5 −3101.52 2.00 0.16
Sparse vegetation 5 −3101.52 2.00 0.16

Beaver
Sparse vegetation 5 −1594.50 0.00 0.44
Trees 5–10 m 5 −1595.67 2.34 0.14
Vegetation 0–0.5 m 5 −1595.70 2.40 0.13
Null (intercept with random effects) 4 −1597.08 3.16 0.09
Vegetation 0.5–1 m 5 −1596.49 3.98 0.06
Shrubs 3 m 5 −1596.53 4.06 0.06
Vegetation 1–3 m 5 −1596.94 4.88 0.04
Tree 10–25 m 5 −1597.07 5.14 0.03

Raccoon
Tree 5–10 m 5 −1580.21 0.00 0.44
Sparse vegetation 5 −1581.00 1.58 0.20
Null (intercept with random effects) 4 −1582.63 2.84 0.11
Vegetation 0.5–1 m 5 −1581.92 3.42 0.08
Trees 10–25 m 5 −1582.54 4.66 0.04
Vegetation 0-0.5 m 5 −1582.60 4.78 0.04
Vegetation 1–3 m 5 −1582.61 4.80 0.04
Shrubs 3 m 5 −1582.61 4.80 0.04

Mountain Lion
Vegetation 1–3 m 5 −331.54 0.00 0.64
Vegetation 0.5–1 m 5 −333.43 3.77 0.10
Null (intercept with random effects) 4 −334.82 4.57 0.06
Trees 5–10 m 5 −333.94 4.81 0.06
Trees 10–25 m 5 −334.11 5.15 0.05
Sparse vegetation 5 −334.20 5.33 0.04
Shrubs 3 m 5 −334.72 6.37 0.03
Vegetation 0–0.5 m 5 −334.74 6.41 0.03

Table 2
Model Selection results assessing the effects of temperature variables on the daily activity
of mule deer (Odocoileus hemionus), beavers (Castor canadensis), northern raccoons
(Procyon lotor), and mountain lions (Puma concolor). Data were collected from the
Diamond Fork Area in central Utah, USA from January to June 2015.

Model K LL ΔAICc wi

Mule Deer
Average daily temp 5 −3098.22 0.00 0.69
Maximum daily temp 5 −3099.36 2.28 0.22
Null (intercept with random effects) 4 −3101.52 4.60 0.07
Minimum daily temp 5 −3101.45 6.46 0.03

Beaver
Maximum daily temp 5 −1584.30 0.00 0.95
Average daily temp 5 −1587.34 6.08 0.05
Null (intercept with random effects) 4 −1597.08 23.56 0.00
Minimum daily temp 5 −1597.05 25.50 0.00

Raccoon
Null (intercept with random effects) 4 −1582.63 0.00 0.46
Minimum daily temp 5 −1582.56 1.86 0.18
Average daily temp 5 −1582.59 1.92 0.18
Maximum daily temp 5 −1582.60 1.94 0.18

Mountain Lion
Maximum daily temp 5 −333.41 0.00 0.38
Average daily temp 5 −333.74 0.67 0.27
Null (intercept with random effects) 4 −334.82 0.82 0.25
Minimum daily temp 5 −334.82 2.82 0.09

Fig. 1. Human (Homo sapiens) and domestic dog (Canis familiaris) activity ( 95% CI) by
day of week. Significance differences between plots are denoted by different lowercase
letters. Data were collected from the Diamond Fork Area in central Utah, USA from
January to June 2015.

Fig. 2. Number of pictures of species of mammalian wildlife captured with remote
cameras. Data were collected from the Diamond Fork Area in central Utah, USA from
January to June 2015.
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beaver was the second most common (21%), raccoon was the third
most common (12%), and mountain lion was the fourth most common
(2%; Fig. 2). Of these four species, only mule deer were crepuscular,
whereas beavers, raccoons, and mountain lions were nocturnal (Fig. 3).
We did not detect any evidence for spatial autocorrelation among sites
for beavers (Moran’s I= 0.09, z= 0.83, p = 0.41), mule deer (Moran’s
I = 0.14, z = 1.33, p= 0.18), raccoons (Moran’s I= 0.10, z = 0.87,
p = 0.38), or mountain lions (Moran’s I= 0.01, z= 0.03, p = 0.98).

Three out of the four focal species in our study supported our pre-
dictions. As we predicted for crepuscular species (i.e., mule deer), in-
creased human activity during weekends was an important factor
(Table 3). Mule deer reduced activity during weekends and within
campgrounds during weekends (Table 4). Alternatively, we expected
increased human activity on weekends to be less important for noc-
turnal species; activity by beavers and mountain lions (both nocturnal
species) were consistent with this prediction as their top models in-
cluded only environmental factors (Table 3). Neither beavers nor
mountain lions reduced activity due to increased human activity on
weekends (Table 4). However, anthropogenic activity was important
for raccoons, which were also nocturnal (Table 3). Raccoons were less
active in campground areas during weekends (with high activity of
humans), but more active in campgrounds during weekdays (Table 4).

4. Discussion

Our results provided support for the prediction that species with

temporal overlap with humans (i.e., crepuscular species; Fig. 3) would
decrease activity in response to increased human recreation on week-
ends. Our findings corroborate previous research indicating that wild-
life avoid increased human activity on weekends (Cardoni et al., 2008;
Marzano and Dandy, 2012; Trulio and Sokale, 2008). We also found
that nocturnal species, which have minimal temporal overlap with
humans, primarily did not reduce activity because of increased human
activity during weekends. However, we observed differences between
individual species of mammals in our study area and their responses to
periodic increases in human activity depending on the level of temporal
overlap with humans.

We provide additional evidence demonstrating that diurnal and
crepuscular ungulates decrease activity in response to increased an-
thropogenic activity (Barrueto et al., 2014; Rogala et al., 2011; van
Doormaal et al., 2015). Larger-bodied mammals, such as ungulates,
likely have a heightened level of sensitivity to human activity (Brown
et al., 2012), which is particularly evident on weekends (Longshore
et al., 2013; Sibbald et al., 2011). Similar to other ungulates, we ob-
served decreased activity of mule deer in response to increased human
activity during weekend periods. Evidence was not as strong for the
model with the weekend*campground interaction for mule deer com-
pared to just the weekend model. Overall, the activity of mule deer
decreased along our entire study area, providing further support of their
heightened sensitivity and suggests that they may be avoiding human
activity altogether on the weekends.

Results for beavers and mountain lions supported our hypothesis, as

Fig. 3. Diel activity patterns of the four
most prominent species of mammalian
wildlife in our study area (mule deer
[Odocoileus hemionus], beavers [Castor ca-
nadensis], raccoons [Procyon lotor], and
mountain lions [Puma concolor]) compared
to diel activity of humans (Homo sapiens)
and dogs (Canis familiaris). Data were col-
lected from the Diamond Fork Area in cen-
tral Utah, USA from January to June 2015.
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these nocturnal species did not reduce activity in response to increased
anthropogenic activity. The top model for beavers and mountain lions
did not contain the weekend and campground variables and the model-
averaged estimates for these variables were not significant. The lack of
a strong response towards increased human activity is likely due to
these species being nocturnal when human activity is generally at its
lowest (Swinnen et al., 2015). In addition, beavers constantly remain
close (< 20 m) to the perceived safety of water (Rosell and Czech,
2000) and mountain lions are extremely adept at avoiding interactions
with humans (Morrison et al., 2014; Sweanor et al., 2008).

Raccoons did not follow the same patterns as the other nocturnal
species, as they had contrasting activity patterns during weekdays and
weekends. During weekdays when human activity was minimal, rac-
coon activity was concentrated in campgrounds, likely to capitalize on
anthropogenic refuse (Carrillo and Vaughan, 1993; Prange et al., 2004).
Alternatively, during weekends, raccoon activity decreased in camp-
ground areas when human activity was high, contrasting what has been
previously observed for Procyon species (Carrillo and Vaughan, 1993).
An explanation for this pattern may relate to the presence of domestic
dogs on weekends in our study area, particularly in campground areas.
Domestic dogs can reduce activity of raccoons during nocturnal periods
(Suraci et al., 2016) and this may have occurred in our study. This
suggests that being nocturnal does not necessarily preclude a species
from being influenced by anthropogenic activity (in our case, dogs)
occurs at night. For example, green sea turtles (Chelonia mydas) nest on
beaches at night, but have decreased activity during weekends as
human activity increased to observe the nesting process (Jacobson and
Lopez, 1994).

We found a strong correlation between periodic increases in an-
thropogenic activity and subsequent decreases in the activity of species

with greater levels of temporal overlap with humans. The only cre-
puscular species in our study, mule deer, and one of the three nocturnal
species, raccoons, both reduced activity during weekends. However,
this pattern was not evident for the remaining two nocturnal species,
beavers and mountain lions. Questions regarding wildlife responses to
anthropogenic activities are becoming increasingly important to un-
derstand as use of recreation areas by humans is increasing. Our work
adds to the growing understanding that increased human activity on
weekends can influence the behavior of crepuscular species, but less so
for species with limited temporal overlap with humans (Cardoni et al.,
2008; Marzano and Dandy, 2012; Trulio and Sokale, 2008). We provide
evidence that as temporal overlap between humans and wildlife in-
creases, so does the negative influence that humans have on wildlife.
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Mountain lion
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