# PROGRESS REPORT ON LULUCF ACTIONS UNDER ARTICLE 10(2) OF DECISION 529/2013/EU

# **ITALY**

December 2016

## **Authors**

**EXECUTIVE SUMMARY** ISPRA<sup>1</sup>

ENHANCED COMMUNICATION AND STAKEHOLDER CONSULTATION ISMEA<sup>2</sup>

**OVERVIEW OF NATIONAL CIRCUMSTANCES** ISPRA, ISMEA (§3.2)

PAST EMISSIONS AND REMOVALS ISPRA, ISMEA (§4.4)

**PROJECTIONS** ISPRA, ISMEA (§5.2)

**IDENTIFICATION OF MITIGATION POTENTIAL ISMEA** 

LIST OF MEASURES **ISMEA** 

EXISTING AND PLANNED POLICIES AND THEIR IMPACTS **ISMEA** 

**TIMETABLES ISMEA** 

<sup>&</sup>lt;sup>1</sup> Institute for Environmental Protection and Research, ISPRA: Marina Vitullo and Riccardo De Lauretis <sup>2</sup> Italian Institute for agricultural and agro-food market, Agricultural Working Group on emissions accounting of cropland and grassland management pursued by art. 10 of EU 529/2013/ Decision (Ministry of agriculture Food and Forest Policies; Agricultural Research Council) coordinated by Camillo Zaccarini Bonelli.

# **Summary**

| 1. | Ex  | xecutive Summary                                                              | 5  |
|----|-----|-------------------------------------------------------------------------------|----|
| 2. | Er  | nhanced communication and stakeholder consultation                            | 7  |
|    | 2.1 | Communication between ministries / government departments                     | 7  |
|    | 2.2 | Synergies and re-use of existing information                                  | 7  |
|    | 2.3 | Consultation with stakeholders                                                | 7  |
| 3. | Ov  | verview of national circumstances                                             | 9  |
|    | 3.1 | Areas of managed land                                                         | 9  |
|    | 3.  | 1.1 Forest land                                                               | 9  |
|    | 3.  | 1.2 Agricultural land: cropland and grassland                                 | 10 |
|    | 3.2 | Planned improvements                                                          | 13 |
|    | 3.3 | Key C pools and C sources in land based sectors                               | 18 |
|    | 3.4 | Main crop systems and grasslands that have links to key C pools and C sources | 19 |
|    | 3.4 | 4.1 Cropland                                                                  | 19 |
|    | 3.4 | 4.2 Grassland                                                                 | 19 |
| 4. | Pa  | st emissions and removals                                                     | 20 |
|    | 4.1 | Forest Management                                                             | 20 |
|    | 4.2 | Cropland Management                                                           | 21 |
|    | 4.3 | Grazing land management                                                       | 22 |
|    | 4.4 | Planned improvements                                                          | 24 |
| 5. | Pr  | ojections                                                                     | 25 |
|    | 5.1 | Information on projections reported in UNFCCC and UE context                  | 25 |
|    | 5.2 | Planned improvements                                                          | 28 |
| 6. | Ide | entification of mitigation potential                                          | 32 |
|    | 6.1 | Biophysical-technical potential                                               | 32 |
|    | 6.1 | 1.1 Case studies                                                              | 32 |
|    | 6.1 | 1.2 A quantitative description of the mitigation potential                    | 34 |
|    | 6.2 | Economic potential                                                            | 36 |
|    | 6.3 | Market potential                                                              | 38 |
| 7. | Li  | st of measures                                                                | 39 |
|    | 7.1 | Ordinary agriculture                                                          | 39 |
|    | 7.2 | Sustainable agriculture                                                       | 40 |
|    | 7.3 | Agriculture with conservative practices                                       | 40 |
|    | 7.4 | Organic agriculture                                                           | 41 |
|    | 7.5 | Set-aside                                                                     | 41 |
|    | 7.6 | Greening                                                                      | 42 |
|    | 7.7 | Ordinary grazing land                                                         | 43 |

| -   | 7.8 | Managed grazing land                               | .43 |
|-----|-----|----------------------------------------------------|-----|
| -   | 7.9 | Improved grazing land                              | .44 |
| 8.  | I   | Existing and planned policies and their impacts    | .46 |
| 8   | 8.1 | Partnership Agreement: "Carbon" thematic objective | .47 |
| 9.  |     | Timetables                                         | .48 |
| 10. | ·   | References                                         | .49 |

## 1. Executive Summary

Based on an agreement by the Council and the European Parliament, the Decision n. 529/2013/EU sets out accounting rules applicable to greenhouse gas emissions and removals from the LULUCF sector, with the aim of a future inclusion of the LULUCF sector in the Union's emission reduction commitment. The Decision 529/2013/EU also requires Member States to draw up and transmit to the Commission information on their current and future LULUCF actions to limit or reduce emissions and maintain or increase removals resulting from the activities referred to in Article 3.1, 3.2 and 3.3 of abovementioned Decision (Afforestation, Reforestation and Deforestation (ARD), Forest Management (FM), Cropland Management (CM), Grazing Land Management (GM), Wetland Drainage and Rewetting (WDR), and Revegetation (RV)).

Italy has decided to transmit the progress report on LULUCF actions under Article 10(2) of Decision 529/2013/EU as a separate document, following art. 10.1 of the abovementioned Decision.

An expert panel was set up under the coordination of Ministry of Environment and in cooperation with the Ministry of Agriculture, Food and Forest Policies, including relevant national experts and the main stakeholders, at the national and regional levels. The panel is aimed to streamline data, information and policies among the UNFCCC/KP framework, the Decision n. 529/2013/EU and CAP Regulations and to promote the best practices and synergies with other policies and measures relating to forest and agriculture.

The area of managed lands included in the current report is the same reported in the UNFCCC reporting and consistent with the Kyoto Protocol (KP) reporting, as land subject to KP activities have been identified as a subcategory of one of these six IPCC main categories. In Italy all land use categories and related activities (*cropland, grazing land, forest*) are to be considered managed.

A disaggregation of cropland and grassland categories has been carried out and included in the current report, taking into account several management practices: organic farming, sustainable agriculture, conservation practices, set-aside, ordinary agriculture, ordinary grazing land, managed grazing land, improved grazing land.

Emissions and removals related to the period 1990-2014 have been reported, coherently with the data submitted to UNFCCC and related Kyoto Protocol, considering the mandatory carbon pools.

In order to develop a national methodology able to take into account the detailed information on implemented management practices in the estimation process of carbon stock changes related to the soils pool, an analysis of management practices in cropland and grassland categories is currently ongoing.

The data and the information on projections reported in UNFCCC and UE context have been provided. In particular the for the activity *Forest Management*, the assessment of the *Forest Management Reference Level* (FMRL) is included, being the FMRL the averages of the projected forest management (FM) data series for the period 2013-2020, taking account of policies implemented before mid-2009, with emissions/removals from *harvested wood product* (HWP).

Projections for the reporting activities *Cropland Management* and *Grazing land Management* have been reported, estimated on the basis of 1990-2015 trend, subcategory by subcategory, considering a Business As Usual (BAU) scenario consistently with the official Reporting reported under Article 3(2) of the Monitoring Mechanism Decision (Commission Decision 280/2004/EC).

To outline the scenarios (2014-2020) for future trends, according to national strategic plans, the enhancement of agricultural areas and containment of land consumption and the full implementation of CAP (first and second pillar) at national and regional levels have been considered.

The three scenarios are considering the following elements:

- with measures scenario: the maintenance of existing policies has been considered until 2020;
- with additional measures scenario: the introduction of new practices (e.g. "greening") of the first pillar of the CAP, and a strengthening of the practices of the rural development are assumed;
- without measures scenario: refers to the total absence of policies.

A quantitative assessment of the impact of the three different scenarios on the activity data related to cropland and grassland categories has been provided.

The mitigation potential has been analysed, taking into account the biophysical-technical potential (with a focus on soils carbon pool), economic potential, market potential, on the basis of several national studies and researches.

The principal measures implemented in the cropland and grazing land management have been outlined, according the following production systems: ordinary agriculture, sustainable agriculture, agriculture with conservation practices, organic farming, set-aside, greening, ordinary grazing land, managed grazing land, improved grazing land.

The existing and the planned policies have been reported; for each policy, the objective and the related key land area have been described. The implementation status and body has been detailed, policy by policy, and a description of the policy impact, in term of CO<sub>2</sub>.

The timetable for the implemented and planned measures in the period 2013-2020 is provided.

#### 2. Enhanced communication and stakeholder consultation

# 2.1 Communication between ministries / government departments

A national expert panel was set up under the coordination of Ministry of Environment and in cooperation with the Ministry of Agriculture, Food and Forestry Policies. The aforementioned panel involves the relevant national experts and the main stakeholders, at the national and regional levels. The key issue of the panel is to achieve a streamlining among the UNFCCC/KP framework, LULUCF Decision and CAP Regulations and promoting the best practices and synergies with other policies and measures relating to forest and agriculture. Much information relating to LULUCF actions is already part of different frameworks and reporting (i.e. Forest Management Reference Level submission, National Communication under UNFCCC, reporting under Article 3(2) of the Monitoring Mechanism Decision, Rural Development Programmes, Ministerial Conference on the Protection of Forests in Europe (MCPFE) reporting, Agricultural policy strategy, National Renewable Energy Action Plan, etc.).

In a meeting held on 5 June 2014, the Ministry of Agriculture, Food and Forest Policies presented to agricultural regional administrations a draft of a report on emissions accounting of cropland and grassland management (art. 10 of EU 529/2013/ Decision) with a view to better sensitize them to the relevant issues.

Following on this, a questionnaire was sent out to Regions seeking to ascertain technical and financial information for new strategic climate measures to be implemented in the regional RDP 2014-2020.

However it is worth noting that the information on LULUCF to be transmitted within this decision is strictly linked to the policies and measures under the CAP 2014-2020, implemented in the agroforestry sector within the EU, according to the time table described in chapter 3.

# 2.2 Synergies and re-use of existing information

The expert panel is aimed at collecting the information already included in reporting activities and to outline a synthesis to be used in preparing the submission of information on LULUCF actions pursuant to Article 10(1).

#### 2.3 Consultation with stakeholders

In 2009 the Ministry of Agriculture Food and Forest Policies, in conjunction with National Rural Network, held a national workshop involving public and academic officials to evaluate the role of agriculture and forestry sectors in post-Kyoto climate change adaptation and mitigation.

A position paper was published, which, taking into account the importance of the agriculture sector on emission balance, showed the strategies of the Italian rural development and agro-food chain for climate policies. The aim was to enhance not only the contribution of agriculture to emission reduction, but also to play an active role in economic development.

Soon after, the Ministry began working on a "White paper on climate change" which was published in 2011. This document presented the national framework for opportunities and challenges for rural development on mitigation and adaption to climate change, taking into account various possible climatic scenarios.

Around eighty experts contributed to this document, highlighting detailed proposed actions which the Italian agriculture and forestry sector could adopt, not only in LULUCF, but also in the animal husbandry, agrofood and energy sectors.

During 2012 and 2013 the involvement of stakeholders continued as evidenced by the publication of further relevant magazine articles, as well as on line, at <a href="https://www.pianetapsr.it">www.pianetapsr.it</a>.

In addition to this, a technical report concerning the baseline indicators n.24 and n.25 (renewable energy and agricultural and forestry biomass) for the monitoring and evaluation of the regional RDP 2007-2013 was published.

On the international level, ISMEA (Italian Institute for agricultural and agro-food market) represented the Italian Rural network at a workshop entitled "Climate Change mitigation and adaptation in RDP's", organized by the European Evaluation Network, held in Cyprus on 10-11 February 2014.

On 13 March 2014, more than 170 stakeholders from NRN partners, government institutions, universities and research organizations attended a workshop in Rome organized by Rete Rurale - the Italian NRN - regarding the contribution of the 2014-2020 RDP to the efficient use of resources and the transition to a low-carbon economy in the food industry<sup>3</sup>.

Delegates heard presentations on climate indicators and the strategic framework for support from Ministry of Agricultural, Food and Forestry Policies representatives. These were followed by sessions covering practical ways to monitor and reduce emissions at both regional and farm levels.

On the 22<sup>nd</sup> April 2014 the Partnership Agreement (document that defines the strategies and priorities of the Member State) has been notified to the European Commission. The Agreement, as indicated in the Commission Regulation (EU) No. 1303/2013, was the result of an intensive consultation with a specific focus on the drafting of the Objective no. 4 ("support the transition towards a low-carbon economy in all sectors") and no. 5 ("Promote adaptation to climate change, the prevention and risk management").

On the 1<sup>st</sup> December 2015 ISMEA presented to the Cypriot representatives of European project "ORGANIKO LIFE+" the Italian methodology to calculate the sinks/emissions of CM e GM, in particular for the organic agriculture.

-

<sup>&</sup>lt;sup>3</sup> http://enrd.ec.europa.eu/publications-and-media/enrd-magazine/it/enrd-magazine it.cfm

#### 3. Overview of national circumstances

# 3.1 Areas of managed land

The area of managed lands included in the current report is the same reported in the UNFCCC reporting and consistent with the Kyoto Protocol (KP) reporting, as land subject to KP activities have been identified as a subcategory of one of these six IPCC main categories. In Italy all land use categories (cropland, grazing land, and forest) are to be considered managed under the UNFCCC reporting.

Land uses and land use changes have been assessed, on the basis of the IUTI<sup>4</sup> data, related to 1990, 2000 and 2008. An additional assessment of land use and land use changes has been carried out in 2012, through the survey in the framework of the III NFI, on an IUTI's subgrid (i.e. 301,300 points, covering the entire country). Time series related to the areas to be included into the different IPCC categories have been assembled using IUTI data, and the data assessed by the national forest inventories (1985, 2005, 2012). 2013 and 2014 data have been deduced by a linear extrapolation for the period 2012-2014. Verification and validation activities have been undertaken and the resulting time series have been discussed with the institutions involved in the data providing (i.e. National Forest Service, Ministry of Agricultural, Food and Forestry Policies (MIPAAF), Forest Monitoring and Planning Research Unit (Agricultural Research Council-MPF)).

Further details on the land representation are reported in National Inventory Report -NIR (ISPRA, 2016).

#### 3.1.1 Forest land

National forest definition<sup>5</sup> under the Kyoto Protocol has been fully implemented also in the LULUCF<sup>6</sup> sector of the UNFCCC inventory, in order to maintain coherence and congruity between the two forest-related reporting. The forest definition has been set up, and included in the determination of Italy's assigned amount under Article 7, paragraph 4, of the Kyoto Protocol, and the election of the art. 3.3 and 3.4 activities, by a national expert panel<sup>7</sup> set up under the coordination of Ministry of Environment and in cooperation with the MIPAAF).

Forest Land is therefore defined as a land containing trees and fulfilling the national forest definition's thresholds. Forest land also includes systems with vegetation that currently fall below, but are expected to exceed, the threshold of the forest land category; it may be temporarily unstocked.

Forest roads, cleared tracts, firebreaks and other open areas within the forest as well as protected forest areas are included in forest. All forests fulfilling the definition of forest, as given above, are considered as managed and are under forest management. The total Italian forest area is eligible under forest management activity, since the entire Italian forest area has to be considered managed forest lands.

Forest land area, for the period 1990-2014, is shown in Figure 1, disaggregated into forest land remaining forest land and land converting to forest land subcategories.

<sup>&</sup>lt;sup>4</sup> Detailed information on IUTI is reported in Annex 10 of National Inventory Report 2016, ISPRA 2016, <a href="http://unfccc.int/files/national\_reports/annex\_i\_ghg\_inventories/national\_inventories\_submissions/application/zip/ita-2016-nir-15apr16.zip">http://unfccc.int/files/national\_reports/annex\_i\_ghg\_inventories/national\_inventories\_submissions/application/zip/ita-2016-nir-15apr16.zip</a>

<sup>&</sup>lt;sup>5</sup> National forest definition is the same applied by the Food and Agriculture Organization of the United Nations for its Global Forest Resource assessment (FAO FRA 2000). This definition is consistent with definition given in Decision 16/CMP.1. Forest is a land with following threshold values: a minimum area of land of 0.5 hectares; tree crown cover of 10 per cent; minimum tree height of 5 meters.

<sup>&</sup>lt;sup>6</sup> LULUCF sector include the following categories: Forest land, Cropland, Grassland, Wetlands, Settlements, Other Land.

<sup>&</sup>lt;sup>7</sup> The panel involves, on a voluntary basis, the relevant national experts, including the forest inventory experts (<a href="http://www.sian.it/inventarioforestale/jsp/home\_en.jsp">http://www.sian.it/inventarioforestale/jsp/home\_en.jsp</a>), members of the FAO-FRA Italian panel (<a href="http://www.fao.org/docrep/013/al537E/al537E.pdf">http://www.fao.org/docrep/013/al537E/al537E.pdf</a>) and other national researchers.

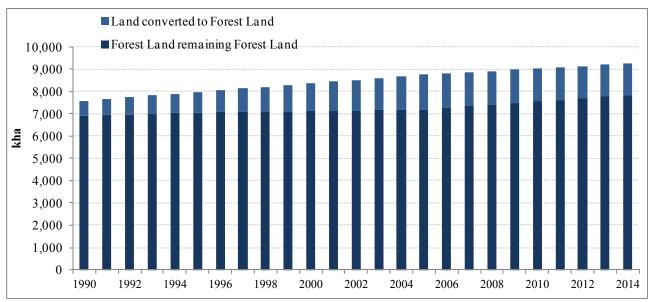



Figure 1: Forest land area for the period 1990-2014 [kha]

In table 1, the area of land subject to the KP art. 3.3 activities (afforestation/reforestation – AR and deforestation – D) and forest management (FM) activity under art. 3.4 is reported for period 2008-2014.

| kha           | 2008  | 2009  | 2010  | 2011  | 2012  | 2013  | 2014  |
|---------------|-------|-------|-------|-------|-------|-------|-------|
| art. 3.3 - AR | 1,437 | 1,495 | 1,553 | 1,612 | 1,670 | 1,728 | 1,787 |
| art. 3.3 - D  | 26    | 29    | 33    | 37    | 40    | 44    | 48    |
| art. 3.4 - FM | 7,486 | 7,483 | 7,479 | 7,475 | 7,471 | 7,468 | 7,464 |

Table 1: Area of land subject to KP art. 3.3 and FM under art. 3.4 activities

# 3.1.2 Agricultural land: cropland and grassland

Cropland is defined as a land that with cropping systems, including trees that fall below the forest definition's thresholds. Lands subject to *cropland management* (CM) activity are consistent with the cropland lands in the UNFCCC reporting. CM data have assessed on the basis of the IUTI data, related to 1990, 2000 and 2008 and 2012; 2013 and 2014 data have been deduced by a linear extrapolation for the period 2012-2014. The same activity data deduced for UNFCCC reporting (cropland category) were therefore used to report for *cropland management*.

Area of land subject to CM, for the period 1990-2014, is reported in Table 2, disaggregated into woody crops and annual crops subcategories.

| kha          | 1990   | 2013  | 2014  |
|--------------|--------|-------|-------|
| woody crops  | 2,698  | 2,390 | 2,329 |
| annual crops | 8,006  | 6,526 | 6,535 |
| total CM     | 10,704 | 8,916 | 8,863 |

Table 2: Area of land subject to CM under art. 3.4 activities

Land subject to *grazing land management (GM)* have been assessed on the basis of the definition included in the Annex to the decision 16/CMP.1<sup>8</sup>. In the 2016 KP submission, only the area related to the 'improved grazing land' have been reported. Data of grazing lands managed with organic practices has been derived from the National System on Organic Farming (SINAB, <a href="http://www.sinab.it/">http://www.sinab.it/</a>) of the Ministry of Agriculture, Food and Forest Policies (MIPAAF).

Area of land subject to GM, for the period 1990-2014, is reported in Table 3.

| kha | 1990 | 2013  | 2014  |
|-----|------|-------|-------|
| GM  | 3.0  | 380.2 | 404.1 |

Table 3: Area of lands subject to GM under art. 3.4 activities

In Table 4, the land uses and land use changes areas for the period 1990-2014 have been reported; following the UNFCCC requirements and the consequent IPCC implementation, the national total area, including those areas not subject to any KP activity as well as the area of lands classified as unmanaged lands under the UNFCCC, is shown, for completeness of reporting and consistency of time series.

<sup>&</sup>lt;sup>8</sup> *Grazing land management* is the system of practices on land used for livestock production aimed at manipulating the amount and type of vegetation and livestock produced.

|                                      | 1990   | 1995   | 2000   | 2001   | 2002   | 2003   | 2004   | 2005   | 2006   | 2007   | 2008   | 2009   | 2010   | 2011   | 2012   | 2013   | 2014   |
|--------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 5. LULUCF                            | 30,134 | 30,134 | 30,134 | 30,134 | 30,134 | 30,134 | 30,134 | 30,134 | 30,134 | 30,134 | 30,134 | 30,134 | 30,134 | 30,134 | 30,134 | 30,134 | 30,134 |
| A. Forest Land                       | 7,590  | 7,980  | 8,369  | 8,447  | 8,525  | 8,603  | 8,681  | 8,759  | 8,814  | 8,868  | 8,923  | 8,978  | 9,032  | 9,087  | 9,142  | 9,196  | 9,251  |
| 1. Forest Land remaining Forest Land | 6,901  | 7,056  | 7,117  | 7,131  | 7,144  | 7,158  | 7,172  | 7,183  | 7,258  | 7,333  | 7,408  | 7,483  | 7,558  | 7,633  | 7,707  | 7,782  | 7,857  |
| 2. Land converted to Forest Land     | 689    | 923    | 1,252  | 1,317  | 1,381  | 1,445  | 1,509  | 1,577  | 1,556  | 1,536  | 1,516  | 1,495  | 1,475  | 1,454  | 1,434  | 1,414  | 1,393  |
| B. Cropland                          | 10,841 | 10,924 | 10,487 | 10,365 | 10,244 | 10,122 | 10,000 | 9,879  | 9,769  | 9,660  | 9,551  | 9,355  | 9,159  | 9,096  | 9,034  | 8,972  | 8,910  |
| 1. Cropland remaining Cropland       | 10,704 | 10,704 | 10,403 | 10,281 | 10,160 | 10,038 | 9,916  | 9,795  | 9,686  | 9,577  | 9,467  | 9,271  | 9,075  | 9,029  | 8,984  | 8,939  | 8,893  |
| 2. Land converted to Cropland        | 136    | 220    | 84     | 84     | 84     | 84     | 84     | 84     | 84     | 84     | 84     | 84     | 84     | 67     | 50     | 34     | 17     |
| C. Grassland                         | 8,891  | 8,278  | 8,186  | 8,202  | 8,218  | 8,233  | 8,249  | 8,265  | 8,292  | 8,318  | 8,345  | 8,459  | 8,573  | 8,553  | 8,533  | 8,513  | 8,493  |
| 1. Grassland remaining Grassland     | 8,566  | 7,985  | 7,592  | 7,572  | 7,552  | 7,531  | 7,511  | 7,488  | 7,430  | 7,371  | 7,313  | 7,255  | 7,196  | 7,138  | 7,080  | 7,021  | 6,963  |
| 2. Land converted to Grassland       | 325    | 292    | 594    | 630    | 666    | 702    | 738    | 777    | 862    | 947    | 1,032  | 1,204  | 1,377  | 1,415  | 1,453  | 1,491  | 1,529  |
| D. Wetlands                          | 510    | 512    | 515    | 515    | 516    | 516    | 517    | 517    | 518    | 518    | 519    | 519    | 519    | 519    | 519    | 519    | 519    |
| 1. Wetlands remaining Wetlands       | 510    | 510    | 510    | 510    | 510    | 510    | 510    | 510    | 510    | 510    | 510    | 510    | 510    | 511    | 511    | 511    | 512    |
| 2. Land converted to Wetlands        | 0      | 2      | 5      | 5      | 6      | 6      | 7      | 7      | 8      | 8      | 9      | 9      | 9      | 8      | 8      | 7      | 7      |
| E. Settlements                       | 1,644  | 1,782  | 1,920  | 1,948  | 1,975  | 2,003  | 2,030  | 2,058  | 2,086  | 2,113  | 2,141  | 2,169  | 2,196  | 2,224  | 2,251  | 2,279  | 2,307  |
| 1. Settlements remaining Settlements | 1,423  | 1,451  | 1,478  | 1,484  | 1,489  | 1,495  | 1,500  | 1,506  | 1,534  | 1,561  | 1,589  | 1,616  | 1,644  | 1,672  | 1,699  | 1,727  | 1,754  |
| 2. Land converted to Settlements     | 221    | 331    | 442    | 464    | 486    | 508    | 530    | 552    | 552    | 552    | 552    | 552    | 552    | 552    | 552    | 552    | 552    |
| F. Other Land                        | 658    | 657    | 656    | 656    | 656    | 656    | 656    | 656    | 655    | 655    | 655    | 655    | 655    | 655    | 655    | 655    | 655    |
| 1. Other Land remaining Other Land   | 658    | 657    | 656    | 656    | 656    | 656    | 656    | 656    | 655    | 655    | 655    | 655    | 655    | 655    | 655    | 655    | 655    |
| 2. Land converted to Other Land      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |

Table 4: Land uses and land use changes areas for the period 1990-2014 [kha]

# 3.2 Planned improvements<sup>9</sup>

Updates on the implementation of the policies of the first and second pillar of the CAP

The legislative package of the new CAP 2014-2020 has been published in December 2013, after a long period of negotiation started in October 2011 and conducted in accordance with the new "ordinary legislative procedure" introduced by the Lisbon Treaty (Art. 294 TFEU) which involved also the European Parliament, as well as the Council and Commission, as co-legislators on the agricultural issue.

In particular, the following regulations were published in the Official Journal of the EU L 347 of 20 December 2013:

- EU Regulation No. 1305/2013 of the European Parliament and of the Council of 17 December 2013 on support for rural development by the European Agricultural Fund for Rural Development (EAFRD) and repealing Council Regulation (EC) No. 1698/2005;
- EU Regulation No. 1306/2013 of the European Parliament and of the Council of 17 December 2013 on the financing, management and monitoring of the common agricultural policy and repealing Council Regulations (EEC) No. 352/78, (EC) No. 165/94, (EC) No. 2799/98, (EC) No. 814/2000, (EC) No. 1290/2005 and (EC) No. 485/2008;
- EU Regulation No. 1307/2013 of the European Parliament and of the Council of 17 December 2013 establishing rules for direct payments to farmers under support schemes within the framework of the common agricultural policy and repealing Council Regulation (EC) No. 637/2008 and Council Regulation (EC) No. 73/2009;
- Commission Regulation (EU) No. 1308/2013 of the European Parliament and of the Council of 17
  December 2013 establishing a common organization of the markets in agricultural products and repealing
  Council Regulations (EEC) No 922/72, (EEC) No 234/79, (EC) No 1037/2001 and (EC) No 1234/2007.

The application of the new negotiating procedures required a longer period for the implementation procedures through the various delegated and implementing acts (approved in 2014), as well as the internal procedures in the Member States. For this reason, an additional EU Regulation No. 1310/2013 was necessary to postpone by one year the entry into force of some key points of the reform of the CAP (such as the "greening") and to provide further rules for the rural development to facilitate the transition from the previous period.

Therefore, the entry into force of the new system for direct payments has occurred since 1 January 2015 (instead of 2014). For this reason, in 2014 the financial support for farmers has been granted on the basis of the previous rules (Regulation (EC) no. 79/2009).

The rural development programme (RDP), planned by the EU Regulation No. 1305/2013 to entry into force from 1 January 2014, starts the effective implementation only in 2016, due to the fact that the Italian PSR were adopted by the European Commission in the second half of 2015 (between May 26 and November 25) and that in the meantime the delay in the closure of previous rural development programme has fully exploited the application of the "n+2 rule" (under which the Commission shall automatically release any part of a budget commitment related to programs of which the application for payment has not been sent by December 31st of the second year following the year of the budget commitment under the program). In 2014 and 2015, Member States have thus been able to continue to undertake legal obligations under the RDP 2007-2013, with the possibility to conclude any residual payments during the 2014-2020 programming period. Also the entry into force of certain measures of the Regulation CMO has been postponed.

To estimate the carbon stock changes in the agricultural activities of the LULUCF sector, as required in the

<sup>.</sup> 

<sup>&</sup>lt;sup>9</sup> Data used in this report, and/or used to make quantitative estimates, is taken from official source Mipaaf (SIAN), and related to the implementation of national and regional measures first and second pillar of the CAP, and national statistics are based on quantitative and qualitative information available at the time of processing. This implies that they are to be considered provisional and subject, in subsequent editions, or any review, even retrospectives, if there is the need to incorporate additional data and information, adjustments and updates statistical and administrative corrections or additions.

article 10 par. 2 of Decision 529/2013, it's necessary to analyze the impact of some measures and production systems within the cropland and grassland categories. To this purpose several production systems have been considered: organic farming, sustainable agriculture, conservation practices, set-aside, ordinary agriculture<sup>10</sup>, ordinary grazing land, managed grazing land, improved grazing land. Within these production systems only agronomic aspects were considered, aimed at preserving the soil, maintaining or increasing the organic matter, such as grassing, crop rotation, cover crops, as well as the minimum or zero tillage. These agronomic practices are illustrated in the table 5.

| <b>Production systems</b>               | Practices                                                                                                     | PAC legislation                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| organic farming                         | Management of waste crop Organic manure Extended crop rotation Selection of better crop varieties Cover crops | Reg. (EEC) n. 2078/92 Reg. (EC) n. 834/2007 and Reg. (EC) n. 889/2008 RDPs 2000-2006: Reg. (EC) n. 1257/99 RDPs 2007-2013: Reg. (EC) n. 1698/2005 and Reg. (EC) n. 74/2009; Reg. (EU) n. 1310/2013 (transitional provisions on support for rural development) RDPs 2014-2020: Reg. (EU) n. 1305/2013 and Regg. (EU) n. 807/2014 and 808/2014      |  |  |  |  |  |
| sustainable agriculture                 | Crop rotation Grassing Specific erosion prevention Cover crops Minimum tillage                                | National decree on sustainable agriculture 22/1/14 RDPs 2000-2006: Reg. (EC) n. 1257/99 RDPs 2007-2013: Reg. (EC) n. 1698/2005 and Reg. (EC) n. 74/2009; Reg. (EU) n. 1310/2013 (transitional provisions on support for rural development) RDPs 2014-2020: Reg. (EU) n. 1305/2013 and Regg. (EU) n. 807/2014 and 808/2014                         |  |  |  |  |  |
| agriculture with conservative practices | Zero tillage Organic manure Grassing c Cover crops Minimum tillage Crop rotation                              | RDPs 2007-2013: Reg. (EC) n. 1698/2005 and Reg. (EC) n. 74/2009; Reg. (EU) n. 1310/2013 (transitional provisions on support for rural development) RDPs 2014-2020: Reg. (EU) n. 1305/2013 and Regg. (EU) n. 807/2014 and 808/2014                                                                                                                 |  |  |  |  |  |
| managed grazing land                    | Renewal and/or thickening of crops                                                                            | Reg. (EU) 1307/2013 and national decrees n. 6513/2013 and 1420/2015 (implementation of Reg. (EU) n. 1307/2013)  National decree on cross compliance implementation n. 30125/2009 and subsequent revisions  National decree on cross compliance implementation n. 3536/2016                                                                        |  |  |  |  |  |
| improved grazing land                   | Renewal and/or thickening of crops  Connection to zoothecnics                                                 | Reg. (EC) n. 1804/1999 Reg. (EC) n. 834/2007 and Reg. (EC) n. 889/2008 RDPs 2000-2006: Reg. (EC) n. 1257/1999 RDPs 2007 - 2013: Reg. (EC) n. 1698/2005 and Reg. (EC) n. 74/2009; Reg. (EU) n. 1310/2013 (transitional provisions on support for rural development) RDPs 2014-2020: Reg. (EU) n. 1305/2013 and Regg. (EU) n. 807/2014 and 808/2014 |  |  |  |  |  |

<sup>&</sup>lt;sup>10</sup> In this report, "ordinary agriculture" is understood as a kind of agriculture that doesn't evidence any kind of soil carbon stock technical maintenance.

|           | Natural grassing    | Reg. (EEC) N. 1765/1992<br>Reg. (EU) 1307/2013 and national decrees n. 6513/2013 and 1420/2015 (implementation of Reg. (EU) n. 1307/2013)                 |  |
|-----------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| set aside | At least one mowing | National decree on cross compliance implementation n. 30125/2009 and subsequent revisions National decree on cross compliance implementation n. 3536/2016 |  |

Table 5: Agricultural management practices considered

The period 1990 - 2000 is characterized by the increasing integration of environmental issue. With CAP reform of 1992, the specific measures to encourage environmentally friendly farming are introduced<sup>11</sup>. These measures include organic agriculture which increases considerably in the coming decade to represent 9% of cropland in 2000. With CAP reform of 1992 set aside<sup>12</sup> took the form of a compulsory measure, which introduced the obligation for farmers to set aside a predetermined percentage of their arable land (or to cultivate it with non food crops) as a condition to apply for compensatory payments. The provisions on the set aside measure were modified in several occasions until the CAP reform of 1999<sup>13</sup>.

From 2000 to 2012 there was a consolidation of the agri-environmental measures. With 1999 CAP reform (Agenda 2000) integration of environmental requirements was achieved via two major pieces of legislation. One, 'horizontal regulation', requires account to be taken of environmental aims in the implementation of first pillar measures (cross-compliance with 2003 CAP reform); the second, the rural development regulation, consolidates earlier agri-environmental measures and adds to them, thereby covering the second pillar of the CAP<sup>14</sup>. These Agri-environmental measures offer opportunities for favouring the build-up of soil organic matter, the enhancement of soil biodiversity, and the reduction of soil erosion, contamination and compaction.

The trend from 2001 to 2014 of the sustainable agriculture, and organic farming areas shows a decrease until 2005 (due to the switch from the Regulation (EC) No. 2078/92 to the Regulation (EC) No. 1257/99 related to the period 2000/2006) and then a considerable increase until 2014.

In the following figures 2 and 3, the area of cropland and grassland categories are showed, including data on the considered management practices.

<sup>&</sup>lt;sup>11</sup> Council Regulation (EEC) No 2078/92.

<sup>&</sup>lt;sup>12</sup> The set aside is introduced with the Council Regulation (EEC) No 1765/92.

<sup>&</sup>lt;sup>13</sup> The main changes concerned the rate of compulsory set aside, the differentiation in rates between compulsory rotational and nonrotational set aside, and the introduction of compensated voluntary set aside Council Regulation (EC) No 231/94.

<sup>&</sup>lt;sup>14</sup> Council Regulation (EU) No 1257/99.

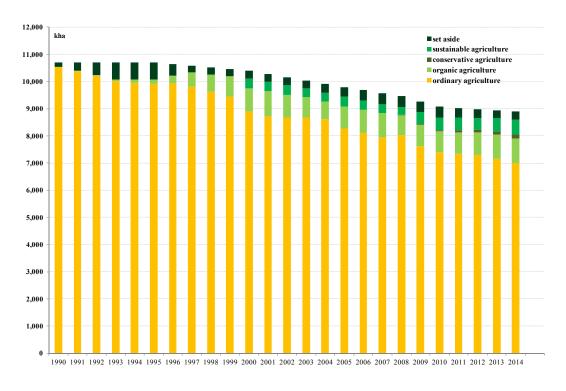



Figure 2: Cropland area for the period 1990-2014, detailed by management practices [kha]

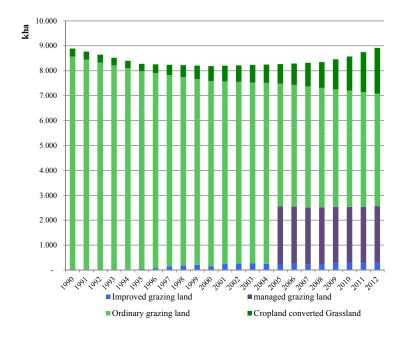



Figure 3: Grassland area for the period 1990-2012, detailed by management practices [kha]

The Cross Compliance includes the protection of permanent grassland in the "good agricultural and environmental conditions" (GAEC), to ensure a minimum level of maintenance and to avoid the decay of habitats through the prohibition to reduce the surface destined to permanent pasture. The rural development programmes include measures to improve grazing land management.

Ordinary grazing land is different from grassland managed according to the cross compliance rules, and from those funded by rural development (improved grazing land), because ordinary grazing land has an extensive management based on minimal interaction with the soil, to avoid the physical and floristic deterioration.

In addition to these measures, the CAP contributes to mitigation and adaptation through funding, into the

rural development, payments to areas facing natural or other specific constraints, to Natura 2000 areas and to the forest conservation<sup>15</sup>.

The table 6 below describes a preliminary study of the measures / production systems that affect GHG, where measures are present in Italian regional RDP 2007-2013, with reference to organic matter and emissions.

|                         | easure                              | Valle d'Aosta | Piemonte | Lombardia | F.V.G. | P.A. Trento | P.A Bolzano | Veneto | E.R. | Liguria | Toscana | Marche | Umbria | Lazio | Abruzzo | Basilicata | Molise | Campania | Calabria | Puglia | Sicilia | Sardegna |
|-------------------------|-------------------------------------|---------------|----------|-----------|--------|-------------|-------------|--------|------|---------|---------|--------|--------|-------|---------|------------|--------|----------|----------|--------|---------|----------|
| Organic a               | griculture                          |               |          |           |        |             |             |        |      |         |         |        |        |       |         |            |        |          |          |        |         |          |
|                         | Integrated agriculture              |               |          |           |        |             |             |        |      |         |         |        |        |       |         |            |        |          |          |        |         |          |
| Sustain able            | Soil<br>management                  |               |          |           |        |             |             |        |      |         |         |        |        |       |         |            |        |          |          |        |         |          |
| agricult                | Soil cover                          |               |          |           |        |             |             |        |      |         |         |        |        |       |         |            |        |          |          |        |         |          |
| ure                     | Conversion of cropland to grassland |               |          |           |        |             |             |        |      |         |         |        |        |       |         |            |        |          |          |        |         |          |
| Conservar<br>agricultur |                                     |               |          |           |        |             |             |        |      |         |         |        |        |       |         |            |        |          |          |        |         |          |
| Improved grazing land   | Extensive crops                     |               |          |           |        |             |             |        |      |         |         |        |        |       |         |            |        |          |          |        |         |          |

Table 6: RDP measures with impact on organic matter and GHG emission

(Fonte: rielab. da "Ricognizione degli studi e delle ricerche riguardanti il potenziale di mitigazione di talune pratiche colturali e delle lavorazioni" MIPAAF – ISMEA 2013)

Grassland areas supported by incentive scheme from rural development and the cropland area subject to cross-compliance standard on crop rotation are currently in the process of verification and validation, and will be used in following stages of the investigation process.

 $<sup>^{15}</sup>$  These are the measures of the 2007-2013 programming 211-212-213-215-225, replaced by those Articles 30-31-34 of the Regulation (EU) No. 1305/2013.

# 3.3 Key C pools and C sources in land based sectors

A key category analysis of the LULUCF categories has been carried out in the Italian national greenhouse gas inventory context, according to the Approach 1 and Approach 2 described in the 2006 IPCC Guidelines (IPCC, 2006). According to the IPCC guidelines, a key category is defined as an emission category that has a significant influence on a country's GHG inventory in terms of the absolute level and trend in emissions and removals, or both. Key categories are those which, when summed together in descending order of magnitude, add up to over 95% of the total emissions or 90% of total uncertainty.

The outcome of the key category analysis for 2014, according to level and/or trend assessment (*IPCC Approach 1 and Approach 2*), is listed in Table 7. CO<sub>2</sub> emissions and removals from forest land remaining forest land, land converted to forest land, cropland remaining cropland, land converted to grassland and land converted to settlements have been identified as key categories, both in level and in trend assessment. CO<sub>2</sub> emissions and removals from grassland remaining grassland have resulted key category in trend assessment and key category with Approach 2 concerning level assessment. CO<sub>2</sub> emissions and removals from land converted to cropland and from HWP have resulted key categories concerning trend assessment (as concerns the first category, only with Approach 2). CH<sub>4</sub> emissions and removals from grassland remaining grassland have been identified as a key category with Approach 2 concerning trend assessment. N<sub>2</sub>O emissions and removals from land converted to settlements have been identified as a key category with Approach 2 both in level and in trend assessment.

|         | gas                                | categories                        | 2014         |
|---------|------------------------------------|-----------------------------------|--------------|
| 4.A.1   | $CO_2$                             | Forest land remaining forest land | key (L, T)   |
| 4.A.2   | $CO_2$                             | Land converted to forest land     | key (L, T)   |
| 4.B.1   | $CO_2$                             | Cropland remaining cropland       | key (L, T)   |
| 4.B.2   | $CO_2$                             | Land converted to cropland        | key (T2)     |
| 4.C.1   | $CO_2$                             | Grassland remaining Grassland     | key (L2, T)  |
| 4.C.1   | $CH_4$                             | Grassland remaining Grassland     | key (T2)     |
| 4.C.2   | $CO_2$                             | Land converted to Grassland       | key (L, T)   |
| 4.E.2   | $CO_2$                             | Land converted to Settlements     | key (L, T)   |
| 4.G     | $CO_2$                             | HWP                               | key (T)      |
| 4(III)  | $N_2O$                             | Land converted to Settlements     | key (L2, T2) |
| 4(V).A1 | $CH_4$                             | Forest land remaining forest land | Non-key      |
| 4(V).A1 | $N_2O$                             | Forest land remaining forest land | Non-key      |
| 4.B.2   | CH <sub>4</sub> , N <sub>2</sub> O | Land converted to cropland        | Non-key      |
| 4.C.1   | $N_2O$                             | Grassland remaining Grassland     | Non-key      |
| 4.D     | $CO_2$                             | Wetlands                          | Non-key      |
| 4.E.1   | $CO_2$                             | Settlements remaining Settlements | Non-key      |

Table 7: Key categories identification in the LULUCF sector

Key category analysis for KP-LULUCF was carried out according to the section 2.3.6 of the 2013 KP Supplement (IPCC, 2014). In the following Table 8 a summary overview for key categories for LULUCF activities under Kyoto Protocol is reported.

|                                             |        | Criteria used for key category identification  |                                                                                                            |            |  |  |  |  |  |  |  |  |  |
|---------------------------------------------|--------|------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------|--|--|--|--|--|--|--|--|--|
| Key categories of<br>emissions and removals | Gas    | Associated category in UNFCCC inventory is key | Category contribution is greater than the smallest key category in the UNFCCC inventory (including LULUCF) | Comments   |  |  |  |  |  |  |  |  |  |
| Forest Management                           | $CO_2$ | Forest land remaining forest                   | Yes                                                                                                        | key (L, T) |  |  |  |  |  |  |  |  |  |

| Key    | categories (         | f Gas      | Criteria used for key category identification | Criteria used for key category identification |            |  |  |  |  |
|--------|----------------------|------------|-----------------------------------------------|-----------------------------------------------|------------|--|--|--|--|
|        |                      |            | land                                          |                                               | _          |  |  |  |  |
| Affore | station/Reforestatio | $n$ $CO_2$ | Land converted to forest land                 | Yes                                           | key(L, T)  |  |  |  |  |
| Defore | estation             | $CO_2$     | Land converted to Settlements                 | Yes                                           | key(L, T)  |  |  |  |  |
| Crople | and management       | $CO_2$     | Cropland remaining cropland                   | Yes                                           | key(L, T)  |  |  |  |  |
| Grazir | ng land managemen    | $t CO_2$   | Grassland remaining Grassland                 | Yes                                           | key(L2, T) |  |  |  |  |

Table 8: Summary overview for key categories for LULUCF activities under Kyoto Protocol

## 3.4 Main crop systems and grasslands that have links to key C pools and C sources

#### 3.4.1 Cropland

Cropland includes all annual and perennial crops as well as temporary fallow land (i.e., land set at rest for one or several years before being cultivated again). Annual crops may include cereals, oils seeds, vegetables, root crops and forages. Arable land which is normally used for cultivation of annual crops but which is temporarily used for forage crops or grazing as part of an annual crop-pasture rotation is included under cropland. Temporary set aside of annually cropland (e.g. conservation reserves) is included in cropland category. Perennial crops include trees and shrubs, in combination with herbaceous crops (e.g. agroforestry) or as orchards, olive groves and vineyards.

Different management practices, including crop type and rotation, tillage, drainage, residue management and organic amendments, are implemented on cropland areas, depending on crop, soil and climate variables. Carbon stock changes for living biomass and soils carbon pools are estimated and reported in UNFCCC context.

Lands subject to cropland management activity are consistent with the cropland lands in the UNFCCC reporting. The same activity data deduced for UNFCCC reporting (cropland category) were therefore used to report for cropland management.

#### 3.4.2 Grassland

Grassland includes grazing lands, forage crops, permanent pastures, and lands once used for agriculture purposes, but in fact set-aside since 1970. Grasslands generally have vegetation dominated by perennial grasses, with grazing as the predominant land use, and are distinguished from "forest" by having a tree canopy cover of less than the threshold used in the forest definition.

Carbon stocks in permanent grassland are influenced by human activities and natural disturbances, including harvesting of woody biomass, rangeland degradation, grazing, fires, pasture management, etc.

Carbon stock changes for living biomass, dead organic matter and soils carbon pools are estimated and reported in UNFCCC context.

Lands subject to *grazing land management* in Italy are those predominantly covered by herbaceous vegetation (introduced or indigenous) for a period longer than five years, used for grazing or fodder harvesting and /or under practices to control the amount and type of vegetation. As already mentioned in par. 3.1.2, in the 2016 KP submission, only the area related to the 'improved grazing land' have been reported on the basis of the areas subject to inspections and certifications procedures, in accordance with the EU Regulations<sup>16</sup> on organic production, as well as by the Rural Development Regulations<sup>17</sup> related to the organic farming measure.

<sup>&</sup>lt;sup>16</sup> Commission Regulation (EC) n. 889/2008: <a href="http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008R0889&from=EN">http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008R0889&from=EN</a>; Council Regulation (EC) n. 834/2007: <a href="http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008R0889&from=EN/TXT/PDF/?uri=CELEX:32008R0889&from=EN/TXT/PDF/?uri=CELEX:32008R0889&from=EN/TXT/PDF/?uri=CELEX:32008R0889&from=EN/TXT/PDF/?uri=CELEX:32008R0889&from=EN/TXT/PDF/?uri=CELEX:32008R0889&from=EN/TXT/PDF/?uri=CELEX:32008R0889&from=EN/TXT/PDF/?uri=CELEX:32008R0889&from=EN/TXT/PDF/?uri=CELEX:32008R0889&from=EN/TXT/PDF/?uri=CELEX:32008R0889&from=EN/TXT/PDF/?uri=CELEX:32008R0889&from=EN/TXT/PDF/?uri=CELEX:32008R0889&from=EN/TXT/PDF/?uri=CELEX:32008R0889&from=EN/TXT/PDF/?uri=CELEX:32008R0889&from=EN/TXT/PDF/?uri=CELEX:32008R0889&from=EN/TXT/PDF/?uri=CELEX:32008R0889&from=EN/TXT/PDF/?uri=CELEX:32008R0889&from=EN/TXT/PDF/?uri=CELEX:32008R0889&from=EN/TXT/PDF/?uri=CELEX:32008R0889&from=EN/TXT/PDF/?uri=CELEX:32008R0889&from=EN/TXT/PDF/?uri=CELEX:32008R0889&from=EN/TXT/PDF/?uri=CELEX:32008R0889&from=EN/TXT/PDF/?uri=CELEX:32008R0889&from=EN/TXT/PDF/?uri=CELEX:32008R0889&from=EN/TXT/PDF/?uri=CELEX:32008R0889&from=EN/TXT/PDF/?uri=CELEX:32008R0889&from=EN/TXT/PDF/?uri=CELEX:32008R0889&from=EN/TXT/PDF/?uri=CELEX:32008R0889&from=EN/TXT/PDF/?uri=CELEX:32008R0889&from=EN/

#### 4. Past emissions and removals

The IPCC default land use transition period of 20 years has been used to estimate carbon stock changes in mineral soils related to land use changes; the annual changes in carbon stocks in mineral soils have been reported for 20 years subsequent the conversion.

# 4.1 Forest Management

All the data concerning the growing stock and the related carbon are assessed by the For-est model, estimating the evolution in time of the Italian forest carbon pools, according to the IPCC classification and definition: *living biomass*, both *aboveground* and *belowground*; *dead organic matter*, including *dead wood* and *litter*; and *soils* as soil organic matter. Additional information on the methodological aspects may be found in Federici et al., 2008. Italy has decided not to account for the soil carbon stock changes from forest land remaining forest land and from activities under Article 3.4, providing transparent and verifiable information to demonstrate that soils pool is not a source in Italy, as required by par. 21 of the annex to decision 16/CMP.1. Additional information on the methodological aspects may be found in National Inventory Report (NIR) (ISPRA, 2016).

Emissions and removals related to the category Forest land, for the period 1990-2014, are reported in Figure 4, disaggregated into the required carbon pools: *living biomass, dead organic matter* and *soils*.

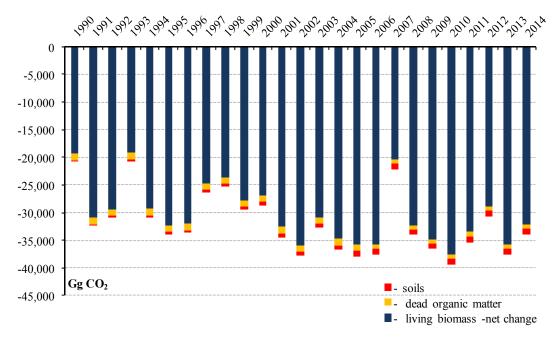



Figure 4: Emissions and removals for the category forest land [GgCO<sub>2</sub> eq.]

content/EN/TXT/HTML/?uri=URISERV:f86000&from=IT; Council Regulation (EEC) n. 2092/91: http://eurlex.europa.eu/LexUriServ/LexUriServ/do?uri=CELEX:31991R2092:EN:HTML

<sup>&</sup>lt;sup>17</sup> Regulation (EEC) n. 2078/92: <a href="http://ec.europa.eu/agriculture/envir/programs/evalrep/text\_en.pdf">http://ec.europa.eu/agriculture/envir/programs/evalrep/text\_en.pdf</a>; Council Regulation (EC): n. 1257/1999 <a href="http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31999R1257&from=en;">http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31999R1257&from=en;</a>; Council Regulation (EC): n. 1698/2005: <a href="http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32005R1698&from=en;">http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32005R1698&from=en;</a>; Regulation (EU): n. 1305/2013: <a href="http://eur-lex.europa.eu/lexUriServ.do?uri=OJ:L:2013:347:0487:0548:EN:PDF">http://eur-lex.europa.eu/lexUriServ.do?uri=OJ:L:2013:347:0487:0548:EN:PDF</a>

In table 9, GHG emissions and removals related to the lands subject to the KP art. 3.3 activities (Afforestation/Reforestation – AR and Deforestation – D) and article 3.4 activity (forest management –FM) for the 2013 and 2014 are reported.

| Gg CO <sub>2</sub> eq. | 2013    | 2014    |
|------------------------|---------|---------|
| art. 3.3 - AR          | -8,079  | -7,837  |
| art. 3.3 - D           | 2,030   | 2,039   |
| art. 3.4 - FM          | -29,014 | -29,145 |

Table 9: GHG emissions/removals from activities under Article 3.3 activities and from Forest Management under Article 3.4

# 4.2 Cropland Management

Lands subject to cropland management include annual and perennial crops; the change in biomass has been estimated only for perennial crops, since, for annual crops, the increase in biomass stocks in a single year is assumed equal to biomass losses from harvest and mortality in that same year.

Methods for estimating carbon stock changes for lands subject to *cropland management* activity are the same as those used for the UNFCCC greenhouse gas inventory: a detailed description of the model and the parameters used in the estimation process are reported in National Inventory Report - NIR (ISPRA, 2014). In line with the 2013 KP Supplement (IPCC, 2014) and 2006 IPCC Guidelines (IPCC, 2006), carbon stock changes have been estimated only for the living biomass of perennial woody crops, on the basis of carbon gains and losses, computed applying a value of biomass C stock at maturity. Tier 1 method has been followed for dead wood and litter, assuming that the abovementioned pools are at equilibrium, and no carbon stock changes are occurring. Soils carbon stock changes have been assessed to be not occurring, as no management changes can be documented. CO<sub>2</sub> emissions from cultivated organic soils subject to CM activity have been estimated, using default emission factor for warm temperate, reported in Table 5.6 of 2006 IPCC Guidelines (vol.4, chapter 5). The area organic soils, updated on the basis of the FAOSTAT database, have been assessed through the stratification of different global datasets:

- the area covered by organic soils have been defined by extracting the Histosols classes from the  $Harmonized\ World\ Soil\ Database^{18}$
- the cultivated area has been identified from the global land cover dataset, GLC2000<sup>19</sup>, using the three "cropland" classes.

In Table 10 GHG emissions and removals related to land subject to cropland management are reported.

| Gg CO <sub>2</sub> eq. | 1990 | 2013  | 2014  |
|------------------------|------|-------|-------|
| art. 3.4 - CM          | -120 | 1,406 | 1,346 |

Table 10: GHG emissions/removals from Cropland Management under Article 3.4

<sup>18</sup> FAO/IIASA/ISRIC/ISSCAS/JRC, 2012. Harmonized World Soil Database (version 1.2). FAO, Rome, Italy and IIASA, Laxenburg, Austria.

<sup>&</sup>lt;sup>19</sup> EC-JRC. 2003. Global Land Cover 2000 database. Available at <a href="http://bioval.jrc.ec.europa.eu/products/glc2000/glc2000.php">http://bioval.jrc.ec.europa.eu/products/glc2000/glc2000.php</a>

## 4.3 Grazing land management

Data of land subject to grazing land management has been derived from the National System on Organic Farming (SINAB, http://www.sinab.it/) of the Ministry of Agriculture, Food and Forest Policies (MIPAAF). Total organic area is reported in the SINAB at national level since 1990. Quantitative information on the different subcategories, including organic grazing land, is available from the year 1999. The data related to the land subject to the organic grazing land from 1990 to 1998 has been deduced applying the average proportion of organic grazing land to the total organic area (22.6%) calculated on the basis of SINAB data. the area reported under GM is currently a subset of the area reported under UNFCCC, grassland category. Carbon stock changes related to land subject to grazing land management have been estimated on the basis of the guidance of 2013 KP Supplement (IPCC, 2014). In particular no change in carbon stocks in the living biomass pool has been assumed; Tier 1 method has been followed for dead wood and litter, assuming that the abovementioned pools are at equilibrium, and no carbon stock changes are occurring. Changes in carbon stocks in mineral soils have been estimated following the 2006 IPCC Guidelines (eq. 2.25, vol.4, chapter 2), on the basis of country specific SOC<sub>ref</sub> deduced by the default reference soil organic carbon stocks for mineral soils (table 2.3, vol.4, chapter 2, IPCC, 2006). The assessment of the country specific SOC<sub>ref</sub> has been carried out using the following layers: Climatic Zone layer<sup>20</sup>, Corine Land Cover 2006<sup>21</sup>, italian soil map (Costantini et al., 2013). The country specific SOC<sub>ref</sub> have been stratifies into three macroareas in Italy: north (78.5 t C ha<sup>-1</sup>), center (71.3 t C ha<sup>-1</sup>) and south (46.2 t C ha<sup>-1</sup>). Default stock change factors (F<sub>LU</sub>, F<sub>MG</sub>, F<sub>1</sub>) have been selected on the basis of national circumstances.

In Table 11 GHG emissions and removals related to land subject to grazing land management are reported.

| Gg CO <sub>2</sub> eq. | 1990 | 2013 | 2014 |
|------------------------|------|------|------|
| art. 3.4 - GM          | -3   | -637 | -675 |

Table 11: GHG emissions/removals from Grazing land Management under Article 3.4

Greenhouse gas removals and emissions in the categories of the LULUCF sector in 2014 are shown in following table 12.

-

<sup>&</sup>lt;sup>20</sup> European Commission's Joint Research Centre (JRC): Climatic Zones <a href="http://esdac.jrc.ec.europa.eu/projects/renewable-energy-directive">http://esdac.jrc.ec.europa.eu/projects/renewable-energy-directive</a>

Corine Land Cover 2006: http://sia.eionet.europa.eu/CLC2006

| GHG Gas Source and Sink<br>Categories | 1990    | 1995    | 2000    | 2005    | 2006    | 2007    | 2008    | 2009    | 2010    | 2011    | 2012    | 2013    | 2014    |
|---------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| CO2 (2)                               | -8,552  | -25,927 | -20,612 | -32,578 | -33,319 | -11,764 | -29,385 | -30,706 | -35,354 | -26,770 | -19,984 | -31,739 | -27,693 |
| A. Forest Land                        | -20,800 | -33,942 | -28,761 | -37,910 | -37,541 | -22,162 | -34,080 | -36,613 | -39,433 | -35,408 | -30,792 | -37,611 | -34,036 |
| B. Cropland                           | 2,172   | 1,785   | 2,014   | 1,429   | 1,219   | 1,253   | 1,221   | 1,313   | 1,305   | 3,410   | 3,365   | 3,327   | 3,216   |
| C. Grassland                          | 3,954   | -1,245  | 107     | -2,889  | -3,582  | 2,581   | -3,129  | -2,492  | -4,508  | -4,486  | -2,213  | -7,225  | -6,611  |
| D. Wetlands                           | NE,NO   | 5       | 8       | 8       | 8       | 8       | 8       | NE,NO   | NE,NO   | NE,NO   | NE,NO   | NE,NO   | NE,NO   |
| E. Settlements                        | 6,641   | 8,275   | 6,495   | 7,316   | 7,326   | 7,330   | 7,370   | 7,406   | 7,410   | 9,537   | 9,539   | 9,544   | 9,547   |
| F. Other Land                         | NO      |
| G. Harvested wood products            | -520    | -804    | -476    | -531    | -749    | -775    | -775    | -320    | -128    | 178     | 117     | 226     | 191     |
| H. Other                              | NO      |
| CH4                                   | 66.83   | 15.43   | 38.03   | 15.37   | 12.21   | 72.69   | 20.02   | 23.99   | 14.40   | 22.99   | 48.78   | 7.84    | 13.40   |
| A. Forest Land                        | 39.38   | 8.19    | 21.97   | 8.43    | 6.22    | 40.88   | 8.62    | 9.67    | 4.93    | 9.44    | 25.68   | 5.08    | 7.41    |
| B. Cropland                           | 0.22    | 0.06    | 0.13    | 0.06    | 0.05    | 0.25    | 0.08    | 0.09    | 0.05    | 0.10    | 0.19    | 0.31    | 0.03    |
| C. Grassland                          | 27.23   | 7.18    | 15.94   | 6.88    | 5.94    | 31.56   | 11.33   | 14.23   | 9.43    | 13.45   | 22.92   | 2.45    | 5.95    |
| D. Wetlands                           | NO      |
| E. Settlements                        | NO      |
| F. Other Land                         | NO      |
| G. Harvested wood products            | -       | -       | -       | -       | -       | -       | -       | -       | -       | -       | -       | -       | -       |
| H. Other                              | NO      |
| N2O                                   | 2.72    | 2.72    | 2.25    | 2.04    | 2.01    | 2.83    | 2.19    | 2.29    | 2.13    | 2.79    | 3.07    | 2.41    | 2.49    |
| A. Forest Land                        | 0.01    | 0.00    | 0.01    | 0.00    | 0.00    | 0.01    | 0.00    | 0.00    | 0.00    | 0.00    | 0.01    | 0.00    | 0.00    |
| B. Cropland                           | 0.16    | 0.25    | 0.10    | 0.10    | 0.10    | 0.10    | 0.10    | 0.10    | 0.10    | 0.08    | 0.06    | 0.05    | 0.02    |
| C. Grassland                          | 0.86    | 0.23    | 0.50    | 0.22    | 0.19    | 0.99    | 0.36    | 0.45    | 0.30    | 0.42    | 0.72    | 0.08    | 0.19    |
| D. Wetlands                           | NO      |
| E. Settlements                        | 1.70    | 2.25    | 1.65    | 1.72    | 1.72    | 1.72    | 1.73    | 1.74    | 1.74    | 2.28    | 2.28    | 2.28    | 2.28    |
| F. Other Land                         | NO      |
| G. Harvested wood products            | -       | -       | -       | -       | -       | -       | -       | -       | -       | -       | -       | -       | -       |
| H. Other                              | NO      |
| LULUCF (Gg CO2 eq.)                   | -6,070  | -24,730 | -18,990 | -31,586 | -32,415 | -9,103  | -28,232 | -29,425 | -34,359 | -25,364 | -17,848 | -30,825 | -26,615 |

Table 12: Greenhouse gas emissions from the LULUCF sector in the period 1990-2014

# 4.4 Planned improvements

The analysis of management practices in cropland and grassland categories is currently ongoing with the aim to develop a national methodology able to take into account the detailed information on implemented management practices in the estimation process of carbon stock changes related to the soils pool. The main challenge is the assessment of activity data and ancillary information related to 1990; a collection of any available data related to the period 1971-1990 is currently in progress as well as the delineation of dynamic system for the detection of changes in management practices in the cropland and grassland areas.

An expert group has been constituted by ISMEA to collect activity data, information and parameters to be used in the estimation process of carbon stock changes related to CM and GM activities, for the mandatory pools (aboveground, belowground, deadwood, litter and soils pools), on the basis of stratification identified in the par. 3.2.

## 5. Projections

The driving forces for projections estimations are activity data linked to the LULUCF sector; in particular, activity data related to the category *forest land* (and related activity *Forest Management*) and to the categories *cropland* and *grassland* constitute the key variables to project emissions by sources and removals by sinks for the related category/activity.

# 5.1 Information on projections reported in UNFCCC and UE context

#### Forest management

For the second Commitment Period (2013-2020), Italy has submitted information on Forest Management Reference Level (FMRL), as required by the Decision 2/CMP.6.

The FMRL is the averages of the projected forest management (FM) data series for the period 2013-2020, taking account of policies implemented before mid-2009, with emissions/removals from *harvested wood product* (HWP) using the first order decay functions (A), and assuming instant oxidation (B).

When constructing the FMRL, for Italy, the following elements were taken into account:

a. removals or emissions from forest management as shown in GHG inventories and relevant historical data:

The historical data used for the calculation of the FMRL come from Italy's 2011 national inventory report submission. GHG emissions and removals from FM are provided from 1990 to 2008 for living biomass (above- and below-ground), dead organic matter and GHG emission sources (i.e. forest wildfires). The FMRL includes above- and below-ground biomass and dead organic matter, which is consistent with pools reported in the GHG inventory.

- b. age-class structure:
  - the used age structure is based on the latest national forest inventory (INFC 2005), which shows that most even-aged forests in Italy are within the 21–80 year age classes, with the majority being between 21–40 years
- c. forest management activities already undertaken:
  - indirectly taken into account through the use of the latest available forest time series data (from national forest inventory and other country statistics), and the estimation of the evolution of harvest demand by 2020 based on macroeconomic drivers and policies and legislative provisions adopted by April 2009. These policies are those included in the baseline scenario of the EU model PRIMES, which is the starting point of the projections for the FMRL. Policies adopted after 2009 are factored out.
- d. projected forest management activities under business as usual:

  through the estimation of the evolution of harvest demand by 2020 based on macroeconomic drivers and
  the application of policies implemented by April 2009 and legislative provisions adopted by April 2009.
- e. continuity with the treatment of forest management in the first commitment period:

  Italy has elected forest management among the additional activities of art. 3.4 under the Kyoto Protocol for the first CP, and FM is a mandatory reporting requirement for the second CP.

#### Pools and gases included in the reference level

Aboveground and belowground biomass, dead organic matter and HWP are included in the FMRL. Non-CO<sub>2</sub> GHGs from forest wildfires are also included in the submission. Italy has decided not to account for the soil carbon stock changes from activities under Article 3.4, providing transparent and verifiable information to demonstrate that soils pool is not a source in Italy, as required by par. 21 of the annex to decision 16/CMP.1.

Italy is one of the member States of the EU for which the JRC of the European Commission developed projections in collaboration with two EU modelling groups:

• G4M, from the International Institute for Applied Systems Analysis (IIASA)

• EFISCEN (European Forest Information Scenario Model) from the European Forest Institute (EFI)

The projection provided annual estimates of emissions and removals for forest management up to 2020 for the above- and below-ground biomass carbon pools.

The G4M model relies on spatial data, provided by Italy. The main forest and forest management parameters (e.g. age-class structure, increment and historical harvest) were taken from NFIs.

EFISCEN uses as data input the forest area data from NFIs scaled to match the forest area reported in the national inventory report (the forest land remaining forest land area, from which the deforested area is deducted, and the forest management area) and provides projections on basic forest inventory data (stem wood volume, increment, age-class structure, as well as carbon in forest biomass and soil.

To estimate the FMRL, the emissions and removals estimated by the models for the time series 2000 to 2020 were calibrated/adjusted using historical data from the Party for the period 2000–2008. In this post-calibration, a constant offset is added to models' results for 2000–2020 to match the average historical data provided by each country for the period 2000–2008 in order to ensure consistency with national historical data in terms of the absolute level of emissions and removals and coverage of pools and gases.

Future harvest demand under a 'business as usual' scenario was derived from macroeconomic drivers (e.g. gross domestic product, population) and policies enacted in Italy. This information is used as data input to the GLOBIOM (Global Biomass Optimization Model) model, which projects demand for timber. Italy's projected harvesting rate (for both timber and fuel wood) is 16,879,000 m<sup>3</sup> by the year 2020.

Only biomass pools and emissions from biomass burning have been projected assuming a constant net change, for the period 2009–2020, equivalent to the historical average change reported for the period 2000–2008.

Policies and measures that were implemented before mid-2009 have been considered in Italy's FMRL.

Continuation of current forest management with regard to timber is assumed.

All energy policies implemented at the EU and national levels are taken by the PRIMES model as input values for estimating wood fuel demand driven by these policies, combined with the expected global market effects (for the GLOBIOM model). The future demand for wood for material use (i.e. timber not bioenergy) is projected by GLOBIOM as compared to a base year (2000) based on GDP and population growth, which drive demand for timber. Outputs of PRIMES and GLOBIOM are further used as input to estimate emissions related to HWP pool. Although forest management policies are not used by models as input parameters, the impact of these policies is integrated in the projection process through increment and harvesting rates, and changes in age-class structure. Wood energy demand is derived from an analysis of country-specific policies implemented by April 2009. The increase of harvesting rates for wood for energy will result in more intensive forest management, moving toward the lower rotation lengths of the ranges provided.

The FMRL has been subjected to a technical assessment (TA), carried out by UNFCCC expert, and the FMRL value has been inscribed in the Appendix to Decision 2/CMP.7.

The FMRL for Italy is equal to -22,166Mt CO2 eq. per year applying a first-order decay function for harvested wood products (HWP) and to -21,182 Mt CO2 eq. per year assuming instantaneous oxidation of HWP.

According to Decision 2/CMP.7, methodological consistency between the FMRL and reporting for *forest management* during the second commitment period has to be ensured, applying technical correction if necessary; the methodological elements triggering the need for a technical correction have been analysed, providing a description on the detected inconsistencies and a timing for the addressing of the issue (Table 13).

| Criteria                                                    | Description                                                                                                                                                                                     | Timing    |
|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|                                                             | The FMRL has been calculated with the EU models G4M                                                                                                                                             |           |
| reporting (for Forest land                                  | (IIASA) and EFISCEN (EFI). Estimates of emissions and                                                                                                                                           |           |
| remaining forest land or Forest                             | removals under FM activities have been carried out with the                                                                                                                                     | 2017-2018 |
| Management) changed after the                               | growth model For-est, used to estimate the net change of                                                                                                                                        |           |
| adoption of FMRL                                            | carbon in the five reporting pools.                                                                                                                                                             |           |
| Forest characteristics and related management <sup>22</sup> | Availability of new data resulting from the ongoing NFI and consequent recalculations of the reported data under FM and Forest Land Remaining Forest Land used to establish the reference level | 2017-2018 |
| Howard days of any days                                     | The estimates have been carried out on the basis of the 2013                                                                                                                                    | 2017      |
| Harvested wood products                                     | KP Supplement (IPCC 2014) methodology                                                                                                                                                           |           |

Table 13: Methodological elements triggering a methodological inconsistency between the FMRL and FM reporting

Therefore to ensure methodological consistency between the FMRL and reporting for Forest Management during the second commitment period, Italy is going to apply a technical correction. Qualitative information on TC and methodological consistency and a quantitative assessment will be reported in the next national inventory report inventory submissions, consistently with the requirements of decision 2/CMP.7, annex, paragraph 14 and guidance of the 2013 KP Supplement (IPCC, 2014, par. 2.7.6.3).

In the table 14 projections for cropland and grassland categories have been reported, related to 2020 and 2030. These projections have been carried out on the basis of 1990-2015 trend, subcategory by subcategory, considering a Business As Usual (BAU) scenario<sup>23</sup> and will be been officially reported under Article 3(2) of the Monitoring Mechanism Decision (Commission Decision 280/2004/EC).

| Gg CO2 eq.                       |   | 2000    | 2005    | 2010    | 2015    | 2020    | 2025    | 2030   |
|----------------------------------|---|---------|---------|---------|---------|---------|---------|--------|
| B. Cropland                      |   | 2,046   | 1,459   | 1,335   | 3,141   | 2,793   | 2,410   | 2,017  |
| 1. Cropland remaining Cropland   |   | 1,689   | 1,102   | 978     | 3,141   | 2,934   | 2,764   | 2,606  |
| 2. Land converted to Cropland    |   | 357     | 357     | 357     |         | 141 -   | 354 -   | 588    |
| C. Grassland                     |   | 655 -   | 2,653 - | 4,184 - | 6,289 - | 8,176 - | 9,724 - | 11,172 |
| 1. Grassland remaining Grassland |   | 2,580 - | 261     | 56 -    | 419 -   | 442 -   | 457 -   | 478    |
| 2. Land converted to Grassland   | - | 1,925 - | 2,392 - | 4,240 - | 5,869 - | 7,734 - | 9,267 - | 10,694 |

Table 14: Projections for cropland and grassland categories

<sup>&</sup>lt;sup>22</sup> This includes, among others: age-class structure, increment, species composition, rotation lengths, management practices etc.

<sup>&</sup>lt;sup>23</sup> The BAU scenario has to be considered equivalent to the 'with measures' scenario, taking into account policies and measures already planned and implemented at national level

## 5.2 Planned improvements

To outline the scenarios (2014-2020) for future trends ('with measures', 'with additional measures', 'without measures'), according to national strategic plans, the following policies have been considered:

- enhancement of agricultural areas and containment of land consumption;
- implementation of CAP (first and second pillar) at national and regional levels.

The three scenarios are detailed in the relevant paragraphs. In the first one (with measures scenario)the maintenance of existing policies has been considered until 2020; in the second one (with additional measures scenario), the introduction of new practices (e.g. "greening") of the first pillar of the CAP, and a strengthening of the practices of the rural development are assumed. The last scenario (without measures) refers to the total absence of policies.

# 'With measures' scenario

According to the "Whereas" 22 of Regulation (UE) No 1305/2013 on Rural Development, Member States should maintain the level of efforts made during the 2007-2013 programming period.

Therefore, in this scenario, the future mix of agronomic and financial measures remains constant on the same total of hectares provided to national and regional levels in the programming period 2007-2013.

Regarding the use of land, in line with historical trends, but also considering the proposed legislation at the national level on the containment of land consumption, a reduction of 2% in ten years of cropland areas and an increase of the grassland area<sup>24</sup> of the same percentage, have been assumed.

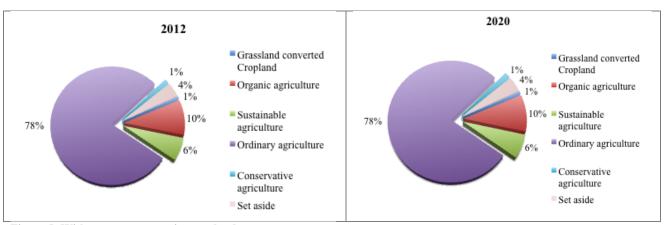



Figure 5: With measures scenario: cropland area

2012

Cropland converted Grassland

Managed grazing land

Improved grazing land

Ordinary grazing land

32%

2020

Cropland converted Grassland

Managed grazing land

Improved grazing land

Ordinary grazing land

32%

Ordinary grazing land

Figure 6: With measures scenario: grassland area

<sup>&</sup>lt;sup>24</sup> Based on the analysis of the time series (see Chapter 4) the average annual value varies between 0.1% and 0.4% so an estimated annual average of 0,2% has been assumed.

#### 'With additional measures' scenario

Three hypotheses have been considered for this scenario:

- the introduction of "Greening" in 2015 as stated in the Regulation (EU) No. 1307/2013 on direct payments;
- an increase of 20% in 2020 (compared to 2012) of the areas where conservative agricultural practices (organic, sustainable, set aside, etc.) in the context of RDP, are applied;
- the combined effect of the two previous measures (Greening and the enhancement of the area with conservative agricultural practices).

As indicated in the first scenario ("with measures") a reduction of the total area of cropland and an increase of the total grassland is considered.

As required by articles 43-47 Regulation (EU) 1307/2013, the greening provides the following practices:

- crop diversification;
- preservation of permanent grassland;
- introduction or maintenance of an area of ecological interest (Ecological Focus Area) on the agricultural area (or equivalent practices).

For more details on greening please refer to Chapter 7.

For the shaping of the scenario, about "crop diversification" the total areas considered for the application of the Greening comes from all conventional farms with minimum areas of 10 hectares of arable land as required by the regulation.

The Ecological Focus Areas have been assimilated to the areas where the set-aside is applied, considering the similar characteristics of the practices.

Finally, the "preservation of permanent grassland" has been assimilated to the "Grazing land management" consistently with other practices (cross-compliance).

Regarding the strengthening of measures and the increase of the total area where conservative agricultural practices are applied, the Regulation (UE) No. 1305/2013 asserts that Member States should be required to spend a minimum of 30% of the total contribution from the EAFRD (European Agricultural Fund for Rural Development) to each rural development program on climate change mitigation and adaptation, as well as environmental issues. Such spending should be made through agri-environment-climate and organic farming payments and payments to areas facing natural or other specific constraints, through payments for forestry, payments for Natura 2000 areas and climate and environment-related investment support.

The total economic amount for those measures represents 27% of the total planned by EAFRD<sup>25</sup>.

Therefore to achieve at least 30% of the total contribution, an increase of 20% (taking into account only measures that impact on soil carbon fluxes) of the agricultural areas involved has been considered until 2020<sup>26</sup>.

Further scenarios, still under study depending on new RDPs 2014-2020, will focus on agronomic practices aimed at preserving the soil, such as conservative agriculture.

•

<sup>&</sup>lt;sup>25</sup> http://www.reterurale.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/13506.

<sup>&</sup>lt;sup>26</sup> The average payment per hectare is considered unchanged.

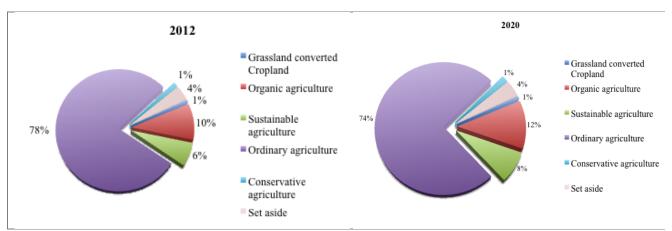



Figure 7: With additional measures scenario: cropland area with an increase of 20% of RDP measures

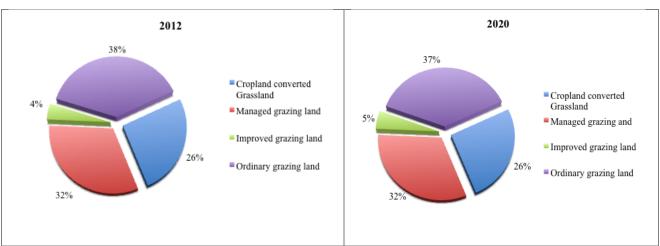
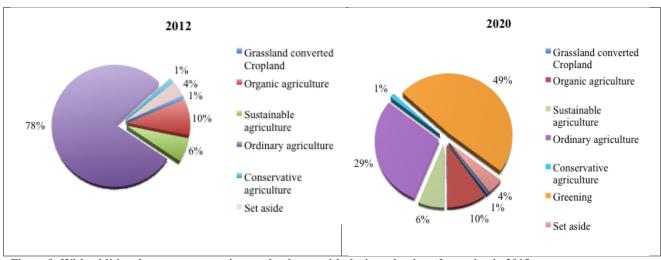




Figure 8: With additional measures scenario: grassland area with an increase of 20% of RDP measures



 $Figure \ 9: With \ additional \ measures \ scenario: \ cropland \ area \ with \ the \ introduction \ of \ greening \ in \ 2015$ 

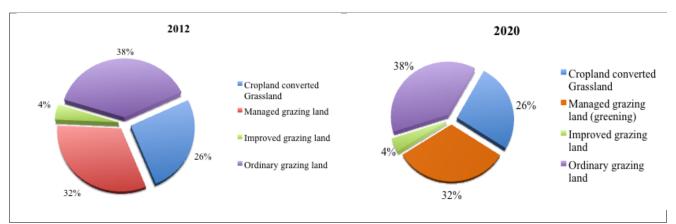



Figure 10: With additional measures scenario: grassland area with the introduction of greening in 2015




Figure 11: With additional measures scenario: cropland area with the introduction of greening in 2015 and an increase of RDP measures

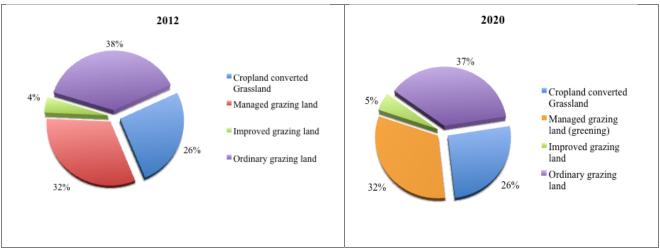



Figure 12: With additional measures scenario: grassland area with the introduction of greening in 2015 and an increase of RDP measures

## 'Without measures' scenario

The total absence of conservative policies and measures is considered in the last scenario. Ordinary farming is applied to the total agricultural areas. "Ordinary farming" refers to a form of agriculture completely traditional and conventional, unproved of any form of "care" of the soil carbon stock. However, more technical and agronomic details about "Ordinary farming" can be found in Chapter 7.

# 6. Identification of mitigation potential

Three different types of the mitigation potential are described in the following part of the report:

- biophysical-technical potential,
- economic potential,
- market potential.

# 6.1 Biophysical-technical potential

In the following paragraphs, some issues on the main hotspot related to soils pool are detailed, on the basis of recent researches on the biophysical potential of mitigation. The analysis of these case studies may be helpful to introduce the next part concerning the quantitative description of the factors needed for the calculation of the soil organic matter.

#### 6.1.1 Case studies

Within climate change mitigation techniques, a specific role is assumed by agronomic practices that produce soil organic carbon (SOC) stock increasing (IPCC, 2007).

Most part of agricultural practices generate an increase of soil organic matter and a decrease of the level of the mineralization; on the other hand, for this reason extreme tillage or other practices characterized by total absence of attention to the level of SOM can be considered climate change practices.

| Agronomic measures               | C-CO <sub>2</sub><br>(Mg ha <sup>-1</sup> a <sup>-1</sup> ) | N₂O direct | N <sub>2</sub> O indirect | CH <sub>4</sub> |
|----------------------------------|-------------------------------------------------------------|------------|---------------------------|-----------------|
| Productivity increase            | -                                                           | +/-        | +/-                       |                 |
| Crop rotations                   | +/-                                                         | +/-        | +/-                       |                 |
| Green manure crops               | +/-                                                         | +/-        | +                         |                 |
| Reduction of growing time        | +/-                                                         | -          | +                         |                 |
| Conversion to permanent crops    | +                                                           | +          | +/-                       |                 |
| Permanent crops grassing         | +                                                           | +/-        | +/-                       |                 |
| Organic agriculture              | ++                                                          | +          | +                         |                 |
| Minimum tillage                  | +/-                                                         | +/-        | +/-                       |                 |
| Sod seeding                      | +                                                           | +/-        | +/-                       |                 |
| Reduction of residues removal    | +/-                                                         | -          | -                         |                 |
| Set aside                        | ++                                                          | +/-        | +/-                       | +               |
| Voluntary kept-uncoltivated land | ++                                                          | +          | +                         | -               |

Table 15: Biophysical mitigation potential of national cropland – (rielab. da Libro Bianco – Sfide ed opportunità dello sviluppo rurale per la mitigazione e l'adattamento ai cambiamenti climatici, 2012)

In this context the cross compliance regime within the CAP provides specific intervention within objective 2 "Maintaining of organic matter", in respect of the national study "Effectiveness of the GAEC standard of cross compliance crop rotations in maintaining organic matter levels in soils", was carried out by Agricultural Research Council's researchers (Borrelli et al. 2011).

A study analysed the effect of crop rotation on SOC in Italy (North, Centre and South). Results showed that crop rotation is effective if the productivity of the system and the C inputs are high.

No-tillage, N fertilization and cover crops have been studied in a long term experiment in Central Italy. The study showed that it is easier to conserve or increase SOC by adopting no-tillage, while conventional tillage requires higher N fertilization rates and introduction of highly productive cover crops (table 17).

Different soil tillage techniques were studied in a long-term experiment in Sicily (Italy). No-tillage and conventional tillage were most effective in SOC sequestration, whereas with dual-layer tillage no C was sequestered.

| Factors and treatment |      | Soil organic carbon (g kg <sup>-1</sup> )* |         |          |      |         |  |  |  |
|-----------------------|------|--------------------------------------------|---------|----------|------|---------|--|--|--|
|                       |      | 0-10 cm                                    |         | 10-30 cm |      |         |  |  |  |
|                       | 1993 | 1998                                       | 2008    | 1993     | 1998 | 2008    |  |  |  |
| Tillage system        |      |                                            |         |          |      |         |  |  |  |
| CT                    | 11.0 | 10.1 b                                     | 10.8 b  | 10.8     | 10.6 | 10.6    |  |  |  |
| NT                    | 11.1 | 13.0 a                                     | 15.5 a  | 9.8      | 9.7  | 10.2    |  |  |  |
| N fertilization       |      |                                            |         |          |      |         |  |  |  |
| N0                    | 11.6 | 11.3                                       | 12.6 b  | 11.0     | 9.8  | 10.3    |  |  |  |
| N1                    | 11.1 | 11.3                                       | 12.5 b  | 10.2     | 10.1 | 9.9     |  |  |  |
| N2                    | 10.7 | 11.4                                       | 13.6 a  | 10.2     | 10.5 | 10.7    |  |  |  |
| N3                    | 10.8 | 12.0                                       | 14.0 a  | 10.0     | 10.1 | 10.6    |  |  |  |
| Cover type            |      |                                            |         |          |      |         |  |  |  |
| C                     | 11.2 | 11.0 b                                     | 12.4 c  | 10.3     | 10.2 | 9.9 c   |  |  |  |
| NL                    | 11.3 | 11.7 ab                                    | 13.1 bc | 10.5     | 10.1 | 10.2 bc |  |  |  |
| LNL                   | 10.8 | 11.4 ab                                    | 13.5 ab | 10.2     | 10.1 | 10.6 ab |  |  |  |
| HNL                   | 10.9 | 12.0 a                                     | 13.7 a  | 10.2     | 10.2 | 10.8 a  |  |  |  |

N0, N1, N2 and N3 are respectively no nitrogen, low nitrogen, medium nitrogen and high nitrogen fertilization rates.

Table 16: Mean effects of tillage system, N fertilization and cover type on organic carbon concentration in the 0-10 cm and 10-30 cm soil layers in 1993, 1998 and 2008.

The contribution to SOC conservation of agricultural woody crops and permanent grassland highlights from the results of RAAM Project (Relations Agriculture and Environment funded by the Ministry of Agricultutal Food and Forestry Policies), in the sampling points of AGRIT in Veneto and Friuli Venezia Giulia regions (northern Italy).

A case study from north-eastern Sardinia (Italy) compared six land uses (Francaviglia et al., 2014). Results have shown higher SOC stocks in less intensive land uses and natural vegetation in comparison with the vineyards, even under climate change conditions (Francaviglia et al 2012).

Grass cover obligation in arable land under set-aside is the most effective cross compliance's innovation in reducing risk erosion, since the yearly tillage of soil is not allowed with related impact on the mitigation potential.

An evaluation study on set-aside was carried out at the EU-25 level. The effects on soil erosion were found to be largely influenced by the presence and type of green cover.

In a study conducted in Apulia region (Borrelli et al., 2011), seven different durum wheat based systems were compared. Results showed a SOC decrease (0.32-0.86 t ha-1 year-1), a steady state condition, and high SOC losses with irrigation.

A modelling approach (TIER3) was used in Apulia in the project CIS, funded by the Ministry of Agriculture. Results showed that the rotations with irrigated tomato have the highest SOC loss (-20÷-5 t ha-1 year-1), while more complex rotations have a steady state or a SOC gain (Di Bene at al., 2014).

From an historical point of view, grass cover obligation of arable land kept non-cultivated (mandatory set-aside until 2008, becoming a voluntary measure) represents the most effective cross compliance's innovation in reducing risk erosion, with related impact on the mitigation potential.

The GAEC (Good Agricultural and Environmental Conditions) standard Management of set aside is applied to arable lands subjected to set aside and kept non cultivated throughout the year. The standard is also applied to other set aside areas eligible for direct payments. For the implementation of this Standard, the

C no cover crop; NL non-legume cover crop; LNL low nitrogen supply legume cover crop; HNL high nitrogen supply legume cover crop.

CT conventional tillage; NT no-tillage.

<sup>\*</sup> Within each factor, means in the same column followed by the same letters are not significantly different at P<0.05 (LSD test)

farmer must assure the presence of natural or artificial green cover on the surface throughout the year and adopt consistent agronomic practices such as mowing, or other equivalent, in order to maintain the normal state of soil fertility, protect wildlife, and prevent the formation of a potential inoculum of fires, especially during drought and prevent the spread of weeds. Up to the CAP Health Check the legislation on the set aside required the farmer to plough the soil by mid-May.

In the Mediterranean environment most erosion is caused by critical rainfall events. In bare soil conditions, soil erosion for set aside was high and similar to that observed in intensive cropping systems. On the contrary, erosion was very low when erosive rainfall occurred with the soil surface sufficiently covered by natural vegetation.

Since 2005 (being the first year of real application of cross compliance by farmers), erosion on set aside under cross compliance might have reduced soil erosion by approximately 98% respect to intensive agriculture and below 3 Mg ha<sup>-1</sup> year<sup>-1</sup> on areas where the GAEC standard has been applied.

In conclusion, from the results of case studies it can be said for certain that the new form of set aside introduced by cross compliance, which forbids the yearly tillage of soil, has a very positive effect in reducing erosion, almost to its complete annulment.

An evaluation study on set-aside was carried out at the European level between May 2007 and April 2008 by Aretè srl and the University of Bologna<sup>27</sup>. It covered the EU-25 in the period between marketing years 2000/01 and 2006/07. An in-depth description of the arable crops sector and of the implementation of the measure in the Member States was provided.

Generally speaking, various positive effects on different environmental aspects can be associated to set aside - and especially to fallow set aside - in comparison with the effects associated with the main conventional agricultural systems in the same conditions. Water consumption, nitrogen losses, biodiversity, GHG emissions and energy consumption were found to be the aspects most positively impacted.

In particular the effects on soil erosion were found to be largely influenced by the presence and type of green cover.

# 6.1.2 A quantitative description of the mitigation potential

Soil C sequestration is a complex process that is influenced by many factors, such as organic C inputs from crop residue, climatic and soil conditions, and the original C levels, as well as all possible interactions with specific soil and crop management. To assess the SOC stock per hectare at the equilibrium related to each management systems mentioned in chapter 7 below, the methods described in the IPCC GL 2006 (Volume 4, chapter 2.3.3) was applied, where SOC stocks are derived by multiplying reference default SOC related to undisturbed soils (SOC<sub>ref</sub>) by stock change factors that are linked to the land use, management and inputs applied in each land use category and sub category.

Mitigation potentials as described in the report of June 2014 remain unchanged, with the exception of the category "improved grazing land" that was reviewed in the context of the Kyoto Protocol and 529/2013 reporting duties. For this category a further effort for the determination of soil emission factors was carried out, so to provide factors specific for each Italian region

The  $SOC_{ref}$  classification of the agriculture and pasture soils is based on the default reference soil organic carbon stocks for mineral soils (tC/ha in 0-30 cm) provided in table 2.3 of IPCC 2006 (Vol. 4). The identification of country specific  $SOC_{ref}$  is estimated using the combination of the information provided by the following map layers:

- IPCC climate zones (JRC) -
- Corine Land cover 2006 (Grassland: legend codes: 2.3 ad 3.2) http://sia.eionet.europa.eu/CLC2006

-

<sup>&</sup>lt;sup>27</sup> Cfr. Evaluation of set-aside measure 2000 to 2006 – final report (May 2008).

- Soil map of Italy- (reclassified according to the main groups of soil types as in table 2.3) -Costantini E.A.C., L'Abate G., Barbetti R., Fantappiè M., Lorenzetti R., Magini S. (2013) Carta dei suoli d'Italia, scala 1:1.000.000 <a href="http://www.soilmaps.it/">http://www.soilmaps.it/</a>
- Map of Italy with administrative boundaries.

From the combination of the information contained in the maps above, it was possible to classify the Italian agricultural soils in the IPCC soil classes (table 2.2, AFOLU Vol. 4 IPCC 2006), and their related climate zones and their related climate zones as percentage in each region.

According to the related distribution of the soil type (table 2.3 of the IPCC 2006) and climate zones in each Italian region, it was possible to define the SOCref.

Specific stock change factors (FLU, FMG, FI) adapted to the national circumstances, have been derived by the default values provided in table 6.2 of the IPCC vol.4 AFOLU 2006, according to assumptions reported in the following table.

|                              | FLU   |                      |      | FMG                                                                                                                                                                                |      |      | FI                                                                                                                          |
|------------------------------|-------|----------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|-----------------------------------------------------------------------------------------------------------------------------|
| Managed<br>grassland         |       | Nominally<br>managed | 1    | Represents non-degraded and sustainably managed grassland, but without significant management improvements.                                                                        |      |      | Applies to improved grassland where one or more additional                                                                  |
| Improved<br>grazing<br>lands | All 1 | Improved             | 1,14 | Represents grassland which is sustainably managed with moderate grazing pressure and that receive at least one improvement (e.g., fertilization, species improvement, irrigation). | High | 1,11 | management<br>inputs/improvements have<br>been used (beyond that is<br>required to be classified as<br>improved grassland). |

Table 17: Stock change factors

The assumption is that 'improved grazing land' only comes from other managed grassland not subject to inspections and certifications, in accordance with the EU Regulations on organic production ((ex) Regulation 2092/1991, Regulation 834/2007 and Regulation 889/2008 implementing Regulation 834/2007), as well as the Rural Development Regulations – organic farming measure (Regulations (ex) 2078/1992, (ex) 1257/1999, (ex) 1698/2005 and 1305/2013).

Changes in carbon stocks in lands subject to GM activities (i.e. *improved grazing lands*) are calculated at regional level as the difference in soil organic carbon ( $\Delta C$ ) between the improved grazing lands ( $SOC_0$ ) and the managed grassland ( $SOC_{0-t}$ ) over the default period of 20 years, as reported in the following table.

|                       |                               | Managed C                                                   | Grassland                     | Improved Gra                                              | zing lands                  |
|-----------------------|-------------------------------|-------------------------------------------------------------|-------------------------------|-----------------------------------------------------------|-----------------------------|
|                       | SOC <sub>ref</sub><br>[tC/ha] | F <sub>LU</sub> *F <sub>MG</sub> *F <sub>I</sub><br>(t=0-t) | SOC <sub>0-t</sub><br>[tC/ha] | F <sub>LU</sub> *F <sub>MG</sub> *F <sub>I</sub><br>(t=0) | SOC <sub>0</sub><br>[tC/ha] |
|                       | а                             | b                                                           | c=(a*b)                       | d                                                         | e=(a*d)                     |
| Piemonte              | 82,68                         | 1,27                                                        | 104,62                        | 1,11                                                      | 91,77                       |
| Valle D'Aosta         | 69,46                         | 1,27                                                        | 87,90                         | 1,11                                                      | 77,10                       |
| Liguria               | 83,52                         | 1,27                                                        | 105,68                        | 1,11                                                      | 92,70                       |
| Lombardia             | 72,01                         | 1,27                                                        | 91,12                         | 1,11                                                      | 79,93                       |
| Trentino Alto Adige   | 70,73                         | 1,27                                                        | 89,50                         | 1,11                                                      | 78,51                       |
| Veneto                | 91,48                         | 1,27                                                        | 115,76                        | 1,11                                                      | 101,54                      |
| Friuli Venezia Giulia | 90,02                         | 1,27                                                        | 113,92                        | 1,11                                                      | 99,93                       |
| Emilia - Romagna      | 82,08                         | 1,27                                                        | 103,87                        | 1,11                                                      | 91,11                       |
| Toscana               | 56,07                         | 1,27                                                        | 70,95                         | 1,11                                                      | 62,24                       |
| Umbria                | 82,23                         | 1,27                                                        | 104,06                        | 1,11                                                      | 91,28                       |
| Marche                | 81,98                         | 1,27                                                        | 103,74                        | 1,11                                                      | 91,00                       |

| Lazio      | 80,16 | 1,27 | 101,43 | 1,11 | 88,98 |
|------------|-------|------|--------|------|-------|
| Abruzzo    | 89,20 | 1,27 | 112,87 | 1,11 | 99,01 |
| Molise     | 67,82 | 1,27 | 85,82  | 1,11 | 75,28 |
| Campania   | 58,25 | 1,27 | 73,72  | 1,11 | 64,66 |
| Puglia     | 37,86 | 1,27 | 47,91  | 1,11 | 42,03 |
| Basilicata | 54,17 | 1,27 | 68,55  | 1,11 | 60,13 |
| Calabria   | 59,31 | 1,27 | 75,05  | 1,11 | 65,84 |
| Sicilia    | 41,89 | 1,27 | 53,01  | 1,11 | 46,50 |
| Sardegna   | 51,27 | 1,27 | 64,88  | 1,11 | 56,91 |

Table 18: SOCs for land subject to GM [t C ha<sup>-1</sup>]

Further investigation are on going to obtain additional information about different types of management activities, to obtain a more accurate estimate of the carbon stocks change.

# 6.2 Economic potential

The estimation of carbon stock changes linked to the agriculture productions nowadays is a very common approach to calculate the carbon footprint for agri-food products. But in most part of the methodologies, soil carbon stock changes are not evaluated. In Italy there are several projects that consider not only the carbon stock changes linked to the production process but also the carbon changes related to the management of the soil (kind of culture, organic or chemical inputs, etc.) Managing this kind of fluxes presents an opportunity to have a more accurate and complete approach to the carbon footprint estimation for several reasons. First of all, considering the soil using national data (and not international generic data) can help both political decision-makers and farmers to orient all the decisions towards the more efficient strategy for the local agriculture ecosystems to exploit the mitigation potential.

Moreover, soil, if managed in an adequate way, can often be a good carbon sink, and can help to reduce the communicated carbon footprint of carbon labels. In fact, carbon labels for the agri-food sectors are a new strategy of industrialized countries to reduce climate change-relevant gas emissions in agriculture. However, not every label includes the measurement of all emissions, as soil emissions, and it may be disadvantages to, and even exclude exporting farmers from several countries.

This is the approach that has been followed by the National Rural Net developing the methodology IAGRICO<sub>2</sub> (for the estimation of the carbon footprint of agri-food products) where both carbon stock changes related to soil of agriculture and forestry land are considered in the total estimation. An important national case has been presented by the Region Emilia Romagna, where an application of carbon footprint has been used for the evaluation of the RDP Agro-environmental Measures. Those carbon footprint estimations considered not only the production processes (energetic consumptions, fuel consumptions, chemicals input, etc.) but also the role of the soil as carbon sink.

Several Italian Regions, in the RDP contest, developed specific measures and actions (e.g. Veneto 214/b) to preserve and increase the content of organic matter in the soil. In the evaluation of RDP programs both the Regions of Lombardia and Veneto developed specific indicators to evaluate the effectiveness of some specific measures (such as 214, and some related actions as the "Organic productions) in terms of quantity of the organic matter in the soil.

But there are some barriers to the development of organic agriculture. In fact the supply of organic products grown in Italy, such as cereals, potatoes, rice, extra-virgin olive oil, pulses, lemons, etc, does not meet the domestic demand. Processors and traders therefore buy on the international market (Callieris et al., 2010). Many conventional farmers in Italy are still reluctant to proceed with organic conversion due to economic uncertainty and the bureaucracy that the change entails. Many organic farmers produce to access payments, but do not sell their products with organic certification. Organic payments do not take into account the cost

of certification, which is covered under a different measure. This results in an additional bureaucratic burden for beneficiaries.

Most regions prioritise the expansion of organic farming in order to increase the positive environmental impact of the action, in compliance with the RDP objectives. However, only a few regions provide incentives to their producers to sell on the organic market. Some regions apply penalties to producers who do not sell their products as organic, and others use a payment system that prioritises farmers who sell goods with the organic logo, or who have on-farm points of sale. On the other hand, other regions prefer not to compel recipients of to make organic payments to market their products, in order to avoid problems for beneficiaries who are unable to provide such evidence. Measure 214 includes other schemes intended to achieve environmental objectives such as increased biodiversity and improved soil quality.

The new CAP 2014-2020 will strengthen the central role of organic agriculture in the fight against climate change, the protection of the environment and the preservation of biodiversity.

In Pillar 1, direct payments, those who are already farming organically will automatically qualify for a Greening payment as they are seen to be *ipso facto* "greening compliant" since they are already undertaking agricultural practices that address climate change and environmental objectives. Greening requirements such as the diversification of annual crops or maintaining permanent grassland, vineyard, olive groves and fruit orchards, are already undertaken by organic farmers which go beyond the scope of the new greening component (De Filippis and Sandali, 2013).

About the economic potential of the future measures for the mitigation, a national study, realized by INEA, "Cost Effectiveness of CAP Greening Measures" gives an ex-ante evaluation in Italy about the application of the Greening measures.

The new policy tool for farms that aims to create a new market for ecosystem services provided by agriculture has been analyzed. The potential regional supply curve of ecosystem services has been quantified, using as a proxy the amount of carbon that could be sequestered with permanent grassland. A minimum data approach has been applied to integrate the spatial heterogeneity of the agro-systems with economic parameter collected through FADN (Farm Accountancy Data Network - Rete di Informazione Contabile Agricola) in a case study area (Veneto, Italy). The simulation allows comparing three policy tools (agri-environment payment, regulatory standard and tradable permit). Results suggest that tradable permits (floor and trade) could be more efficient than policy based on direct payments or mandatory standards, although the largest provision of ecosystem service (carbon sequestered) has been achieved with mandatory mechanism.

# 6.3 Market potential

These instruments, linked with the economic, could be divided in two categories: those useful as mitigation incentive and those useful to mitigation obligations. This kind of tool could be implemented at international, national or local levels, with public or private "emission reduction" policies targeted.

A simple framework of incentives and socio-political obligation for mitigation in Italy is reported in table 19.

| Incentives                                                                                                                                                                    | Obligations                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| <u>Voluntary agreements</u> : considerable alternative to direct regulation or taxes, even if the most widespread in forestry sector (660 agreements until 2009 <sup>28</sup> | <u>Direct regulation</u> : National Decree on cross compliance implementation n. 30125/2009 and subsequent revisions |
| Information campaign: 2010 National Rural Network press campaign, within RD National Strategic Programme, on agriculture as a source for climate change mitigation            | Taxes, duties and rates: National Law n. 448/1998 art. 8 "Carbon tax" (energy sector)                                |
| Government payments for eco-compatible practices and ecosystem services: 21 regional RDPs financing for example sustainable agriculture practices                             | New market creation: emissions market, "green certificate" exchanges                                                 |

Table 19: framework of incentives and socio-political obligation for mitigation (Rielab. da "Libro Bianco – Sfide ed opportunità dello sviluppo rurale per la mitigazione e l'adattamento ai cambiamenti climatici, 2012)

-

<sup>&</sup>lt;sup>28</sup> Cfr. Gli accordi volontari per la compensazione della CO2 – Quaderno 2 INEA (2009).

### 7. List of measures

The principal measures for the management of cropland and grazing land, for the evaluation of soil organic carbon (SOC), should be allocated to the following production systems:

- 1. Ordinary agriculture
- 2. Sustainable agriculture
- 3. Agriculture with conservation practices
- 4. Organic agriculture
- 5. Set-aside
- 6. Greening
- 7. Ordinary Grazing land
- 8. Managed Grazing land
- 9. Improved Grazing land

|                                         | Reduction of GHG emissions from key C sources in key crop or grazing land systems, drained wetlands, forests and degraded land | Avoidance of new GHG emissions from key C pools in key crop and grazing land systems, wetlands, forests, and avoiding land degradation | Maintaining or enhancing carbon sequestration levels in key C pools in key crop and grazing land systems and forests, above all but not exclusively in organic soils (peat lands) |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sustainable agriculture                 | ***                                                                                                                            | **                                                                                                                                     | ***                                                                                                                                                                               |
| Organic agriculture                     | ***                                                                                                                            | **                                                                                                                                     | ***                                                                                                                                                                               |
| Agriculture with conservation practices | ***                                                                                                                            | **                                                                                                                                     | ***                                                                                                                                                                               |
| Set-aside                               | **                                                                                                                             | **                                                                                                                                     | *                                                                                                                                                                                 |
| Greening                                | **                                                                                                                             | **                                                                                                                                     | **                                                                                                                                                                                |
| Managed Grazing land                    | *                                                                                                                              | **                                                                                                                                     | *                                                                                                                                                                                 |
| Improved Grazing land                   | ***                                                                                                                            | **                                                                                                                                     | **                                                                                                                                                                                |

Table 20: Qualitative evaluation of the efficiency of agricultural practices in maintaining soil carbon stock

# 7.1 Ordinary agriculture

Ordinary agriculture is evaluated on the wide-ranging usual practices and techniques in the Italian context in the different macro region. The practices are: ploughing, soil working implements, ridging up to annual crop and scarification soil, ploughing and soil working to limit the competition to another annual species. Consequently, the evaluation of ordinary agriculture is influenced by ploughing, soil-working implements, reduced supply of organic matter to the soil (crop residues, green manure crops, organic manuring).

Due to the lack of databases of practices, ordinary agriculture is standardized on most common practices and therefore this production system results in a low mitigation potential, even though within it coexist different practices that will need to be evaluated.

# 7.2 Sustainable agriculture

Sustainable agriculture refers to production system using techniques, applies pest and weed control reducing chemical impact and rationalizing soil-working and manure in observance of ecological, economic and toxicological principles.

Soil management and soil working techniques need to be addressed to enhance crops adaptation, weed control, fertilization efficiency, leaching reduction, physical structure of soil, erosion prevention, soil drainage and soil matter.

Whenever deep soil working is needed, these have to be evaluated in connection to soil characteristics and its fertility while considering melioration and corrective practices.

This agriculture method requires specific action, indifferent situations, as follows:

- On hillside and mountain plots with an average slope over 30%, for annual crops minimum tillage, no tillage and scarification soil are allowed while for perennial woody crops cover crops and plant removal are allowed.
- On plots with an average slope between 10% and 30%, in addition to the previously described action, soil working is allowed to the maximum depth of 30 cm, with exception of scarification. For perennial woody crops grow cover crops within the rows is mandatory
- On flatland for perennial woody crops grow cover crops within the rows in autumn-winter period is mandatory.
- Where cover crops are present actions of localized manure are allowed.

It emerges that the diffusion of sustainable agriculture enhances the mitigation potential allowing prevention and limitation of  $CO_2$  losses in the atmosphere from soil, and in the meantime increases the stock of soil organic carbon. Since sustainable agriculture does not allow massive soil working actions, it has positive influence on SOC and therefore increases agronomical fertility.

| Actions      | N                                                                                              | Effect                                                                  |                    |          |
|--------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------|----------|
| Actions      | IN .                                                                                           | ote                                                                     | Positive           | Negative |
| Rotation     | Four/five year  Step by simplified rotations (including monoculture) to extended rotations.    |                                                                         | SOC enhancement    |          |
| Grassing     |                                                                                                | Decrease erosion soil and                                               |                    |          |
| Weed control | Chemical control is<br>mandatory within the row,<br>permitted only in case of<br>soil erosion. | water pollution by fertilization, enhance fertility and water drainage. | SOC<br>enhancement |          |

Table 21: Peculiar aspects of sustainable agriculture

### 7.3 Agriculture with conservative practices

Conservative agriculture is a production system based on agronomic techniques addressed to reduce degradation process of croplands and to enhance the soil capability to retain water resource. These techniques are based on crop rotation in addition to cover crops or optimized waste crop management. Soil working need to respect soil profile without soil layers inversion. In detail the used practices are minimum tillage and zero tillage. In conclusion conservative agriculture is a set of techniques that evolved in the last twenty years of the past century mainly composed of:

- ✓ zero tillage or sod seeding;
- ✓ minimum tillage;
- ✓ cover crops adoption;
- ✓ organic manure;

- ✓ on field crops residue disposal;
- ✓ crops rotation diversify.

This production system needs advanced technical skills and specific mechanization that allow enhancing mitigation potential due to specificity of actions aimed to the preservation and increase of SOC.

| Action       | Note                                                                                 | Effect                  |          |  |  |
|--------------|--------------------------------------------------------------------------------------|-------------------------|----------|--|--|
| Action       | Note                                                                                 | Positive                | Negative |  |  |
| Conservative | Match tillage with crop residues                                                     | Reduction of SOC losses |          |  |  |
| practices    | Minimum or zero tillage prevent soil erosion and conserve physical structure of soil | Reduction of SOC losses |          |  |  |
| Cover crops  | Grassing                                                                             | SOC enhancement         |          |  |  |

Table 22: Peculiar aspects of conservative agriculture

# 7.4 Organic agriculture

Organic farming is a production system ruled by Re. (EC) n. 834/2007 and its guidelines, it considers the whole agro-ecosystem, it relies on soil fertility, enhances biodiversity of the environment it operates on. Management of waste crop, organic manure, mandatory crop rotation, selection of better crop varieties and cover crops are the most important among the specific actions to be applied in organic practices finalized to the enhancement of mitigation potential. In particular this production system has to enhance soil structure, avoid deep soil working (<30 cm) that could damage the soil system.

Organic farming is based on eco-compatible management of agricultural activities: reduction or removal of chemical input, structured supply of organic manure, tillage and its timing addressed to fertility preservation, improving nutrient management and residue management.

All these techniques allow enhancing the soil organic carbon, but from their interaction it's possible to obtain result that is higher than the one resulting from the sum of single actions.

On the contrary it has to be noted that the increased mechanization and tillage caused by the limitation of chemical products usage leads to an increased organic carbon loss.

| Action           | Note                                                | Effect                                                            |          |  |
|------------------|-----------------------------------------------------|-------------------------------------------------------------------|----------|--|
| Action           |                                                     | Positive                                                          | Negative |  |
| Leguminous plant | Multiannual crops reduce soil working and ploughing | SOC enhancement                                                   |          |  |
| Manure           | Organic manure                                      | Enhance physical,<br>chemical and biological<br>fertility of soil |          |  |

Table 23: Peculiar aspects of organic agriculture

# 7.5 Set-aside

On these plots there must be cover crops, spontaneous or sown, all year long, and the obligation of at least one mowing or another similar action per annum; it includes voluntary not grown land.

The regulation considers the prohibition of action on cover crops per 120 days and 150 in Natura 2000 areas. In detail these set aside areas, production suspended area, are subject to the following regulation:

- a) Presence of natural or artificial cover crop, year-round
- b) Usage of mowing actions or other similar actions to preserve soil fertility, protect wild fauna, control weed spread and prevent fires, especially in dry conditions.

Mitigation potential is higher in southern Italy than in northern Italy because of the pedoclimatic conditions and the consequent SOC amount of considered areas; nevertheless in both situations positive results in terms of mitigation potential are observed.

| Action                                      | Note                                              | Effect                      |          |  |
|---------------------------------------------|---------------------------------------------------|-----------------------------|----------|--|
| Action                                      | Note                                              | Positive                    | Negative |  |
| Cover crops                                 | Reduce soil erosion                               | Reduction of SOC losses     |          |  |
| Biomass management and reduced soil working | Reduce external input and preserve soil fertility | Influenced C cycle and SOC. |          |  |

Table 24: Peculiar aspects of set aside

# 7.6 Greening

It's the new agro-environmental policy continuing and improving cross compliance aims.

Farmers eligible to receive founding in the context of basic payment for environment and climate have to respect healthy practices on admissible area, as follows:

- 1. Annual crop diversification: farms that grow more than 10 hectares of arable land must ensure a certain degree of crop diversification. In detail:
  - Farms with arable land area between 10 and 30 hectares have to grow at least two annual crops. The first crop cannot cover more than 75% of arable land area of the farm;
  - In farms with over 30 hectares of arable land area at least three annual crops have to be grown. Two of the three annual corps cannot cover more than 95% of arable land area of the farm;
- 2. Permanent meadow preservation: In Natura 2000 and other focus areas, farmers can not convert permanent meadow to cropland and plough soil. In other areas, farmer could eventually be allowed to convert permanent meadow to annual crop.
  - However, the total converted area cannot exceed 5%. Whenever exceeding the 5% threshold the Member State must also locate and require individual farmers to convert their plowed or sown land to permanent grassland. The afforestation of permanent grassland, in some cases, is still authorized.
- 3. Conversion and maintenance of ecological focus area on arable land, or other similar practices: for farms with 15 or more hectares of annual crop area is mandatory that from 1 January 2015, 5% of arable land should be covered with ecological focus area.

Ecological focus areas are:

- shelf;
- landscape features bordering arable land;
- buffer bordering arable land;
- buffer bordering forest land;
- agroforestry systems that receive or received support in accordance with Art. 44 of Regulation (EC) No. 1698/2005 or Art. 24 of the new RDP;
- new afforestation areas with fast-growing species, which do not use mineral fertilizers or plant protection products;
- afforestation areas, Art. 31 of Regulation (EC) No. 1257/1999, Art. 43 of Regulation (EC) No. 1698/2005 and Art. 23 of the new RDP;
- areas with catch crops or nor spontaneous cover crops;
- areas with leguminous plants.

All these techniques allow to enhance the mitigation potential (Borrelli et al. 2011; Lopez et al. 2010), especially crop rotation in extended areas, and permanent meadow preservation mainly due to their more extensive cultivation. Ecological focus areas also show a tendency to enrich the mitigation potential increasing the complexity of the agricultural system.

| Action          | Note                                                                                | Effect          |          |  |
|-----------------|-------------------------------------------------------------------------------------|-----------------|----------|--|
| Action          | Note                                                                                | Positive        | Negative |  |
| Rotation crops  | Step by simplified rotations (including monoculture) to extended rotations.         | SOC enhancement |          |  |
| Permanent crops | Reduce soil working and enhance physical, chemical and biological fertility of soil | SOC enhancement |          |  |
| Buffer          | Reduce soil erosion and enhance soil biodiversity                                   | SOC enhancement |          |  |

Table 25: Peculiar aspects of Greening

# 7.7 Ordinary grazing land

To standardize ordinary grazing land system, the same model used for ordinary agriculture has been applied. In detail, the practices of ordinary grazing land system tend toward the prevention of physical and floristic deterioration.

These areas are characterized by good mitigation potential due to the lower interaction of this production system which is less intensive than arable land areas.

# 7.8 Managed grazing land

Managed grazing land, as required by the rules on cross compliance within target nr. 4 "Ensure a minimum level of land maintenance and avoid the habitats deterioration", requires the standard nr. 4.1 "Protection of permanent pasture", as follows:

- a) reduction of permanent pasture surface in accordance with Article 4 of Regulation (EC) No. 1122/09 and subsequent amendments and additions is banned;
- b) conversion of permanent pasture area for other uses is banned within conservation sites, Community focus areas and special protection areas identified by Directives 92/43/EEC and 2009/147/EC, if not differently prescripted by competent authorities;
- c) soil working is banned, except for those related to the renewal and/or thickening of the sward and the draining management of the water.

The first two points of this list are not considerable agronomical practices but these actions tend to mitigate the tendency toward concentration and specialization of production in lowland areas, since this lands are characterized by high usage in terms of water, chemicals and energy input and agroecosystem simplification. Another important factor, that positively influences the mitigation potentials, is the containment of weed species and the renewal and/or thickening of the sward.

| Action                             | Note                                                                                 | Effect          |          |  |
|------------------------------------|--------------------------------------------------------------------------------------|-----------------|----------|--|
| Action                             | Note                                                                                 | Positive        | Negative |  |
| Permanent crops                    | Reduce soil working and enhance physical, chemical and biological fertility of soil. | SOC enhancement |          |  |
| renewal and/or thickening of crops | Reduce soil erosion and enhance physical, chemical and biological fertility of soil. | SOC enhancement |          |  |

Table 26: Peculiar aspects of Managed Grazing land

# 7.9 Improved grazing land

The optimization of pasture management is considered a very important action in different Italian regions in order to reduce both the risks caused by intensive production, typical system on lowland areas, and the risks associated with simplification of agro-systems and to improve management of these productions. These highlights are associated with the problems of rural areas with development issues and farming marginalization, where abandonment of land leads to the reduction of agronomic practices that in some case produce negative effects on soil, water, climate and biodiversity. The commitments are also aimed at boosting the role of livestock and limit an excessive load of cattle per hectare for the conservation of pasture-based systems that have a positive influence on the environment and the landscape.

This production system contributes more than any other category within the grazing land to mitigate climate change: using the high capacity of perennial forage crops to store atmospheric carbon and prevent ecosystems simplification

| Action                             | Note                                                                                 | Effect          |          |  |  |
|------------------------------------|--------------------------------------------------------------------------------------|-----------------|----------|--|--|
| Action                             | Note                                                                                 | Positive        | Negative |  |  |
| Permanent crops                    | Reduce soil working and enhance physical, chemical and biological fertility of soil. | SOC enhancement |          |  |  |
| Renewal and/or thickening of crops | Reduce soil erosion and enhance physical, chemical and biological fertility of soil. | SOC enhancement |          |  |  |
| Connection to zootechnics          | Enhance physical, chemical and biological fertility of soil.                         | SOC enhancement |          |  |  |

Table 27: Peculiar aspects of Improved Grazing land

In addition to the nine considered measures, the CAP contributes to mitigation and adaptation through continuous funding, as part of rural development: through indemnities in favour of natural or other specific areas, like Natura 2000 areas and the allowances forest<sup>29</sup>.

-

<sup>&</sup>lt;sup>29</sup>Measures 211-212-213-215-225 of RDP 2007-2013, replaced by those Artt. 30-31-34 Reg. (UE) n. 1305/2013.

| Measures                                                 | Ordinary<br>Agriculture                                                          | Organic<br>Agriculture                                                                                                                                                                         | Sustainable<br>Agriculture                                                                                                                                           | Agriculture<br>with<br>conservative<br>practice                                                                                                         | Set-aside                                                                                                                                                                                                                       | Greening                                                                                                                                                                                                                                              | Ordinary<br>grazing land                              | Managed<br>Grazing land                                                                                                            | Improved Grazing<br>land                                                                                                                                                                            |
|----------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cropland<br>Management                                   | Ploughing, soil-working implements, reduced supply of organic matter to the soil | Reduction or removal of chemical input, structured supply of organic manure, tillage and its timing addressed to fertility preservation, improving nutrient management and residue management. | Enhance crops adaptation, weed control, fertilization efficiency, leaching reduction, physical structure of soil, erosion prevention, soil drainage and soil matter. | zero tillage o<br>sod seeding,<br>minimum<br>tillage, cover<br>crops adoption,<br>on field crops<br>residue<br>disposal, crop<br>rotation<br>diversify. | Presence of natural or artificial cover crop, year-round. Usage of mowing actions or other similar actions to preserve soil fertility, protect wild fauna, control weed spread and prevent fires, especially in dry conditions. | Annual crop<br>diversification:<br>farms that grow<br>more than 10<br>hectares of<br>arable land<br>must ensure a<br>certain degree<br>of crop<br>diversification.<br>Conversion and<br>maintenance of<br>ecological focus<br>area on arable<br>land. |                                                       |                                                                                                                                    |                                                                                                                                                                                                     |
| Grazing land<br>management and<br>pasture<br>improvement |                                                                                  |                                                                                                                                                                                                |                                                                                                                                                                      |                                                                                                                                                         |                                                                                                                                                                                                                                 | Permanent<br>meadow<br>preservation                                                                                                                                                                                                                   | Tend to prevent physical and floristic deterioration. | Reduction of<br>area under<br>permanent<br>pasture.<br>Conversion of<br>permanent<br>pasture area.<br>Soil working<br>is mandatory | Boosting the role of livestock and limit an excessive load of cattle per hectare for the conservation of pasture-based systems that have a positive influence on the environment and the landscape. |

Table 28: Correspondence between measures accounted and Annex IV of the Dec. n. 529/2013/UE

Therefore organic and sustainable agriculture actions are the most important to assess the impact related to the cropland management, grazing land management and improved actions for the grassland management.

Moreover, the greening production system and will be applied in the period 2014-2020 on a large scale throughout the country and will have a positive effect.

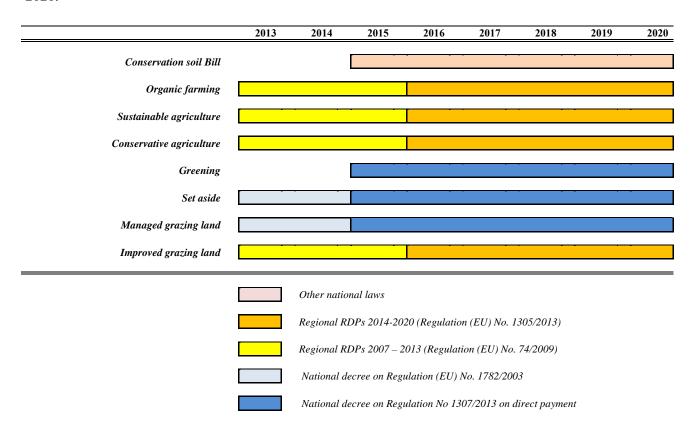
# 8. Existing and planned policies and their impacts

| Name of policy                                                                | Objective                                                                                                                                                                                                                                                                                                                                                                  | Key sources/<br>key land<br>areas                                                                                           | Type of instrument                                                                                    | Status                                                                                                                  | Implementing body                                                                                                                           | Qualitative<br>impact |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Cross-<br>compliance<br>(on force)                                            | To protect the soil through appropriate measures, to maintain the levels of soil organic matter through appropriate practices, to maintain soil structure through appropriate measures, to ensure a minimum level of maintenance of the land and avoid the deterioration of habitats, protecting water against pollution and runoff and manage the use of water resources. | CAP-Pillar I<br>Direct payments<br>CAP pillar II -<br>PSR 14-20<br>measures Art.<br>28-29-30-31-<br>32 Reg.<br>1305/2013/UE | Compulsory<br>scheme for<br>access to direct<br>payments and<br>some measures<br>of the RDP           | Legislative:<br>DM<br>3536/2016                                                                                         | Ministry of<br>Agriculture, Food<br>and Forest Policies;<br>Regions and<br>Autonomous<br>Provinces;<br>AGEA and OPR                         | ++                    |
| Greening<br>(on force from<br>01/01/2015)                                     | Observe, on the whole eligible area, the following practices for the environment and climate: crop diversification, maintenance of permanent grassland, introduction or maintenance of an area of ecological interest                                                                                                                                                      | CAP Pillar I<br>(2014-2020)<br>About 7<br>million Ha                                                                        | Compulsory<br>scheme for<br>access to direct<br>payments                                              | Legislative –<br>Reg. (UE) n.<br>1307/2013                                                                              | Ministry of<br>Agriculture, Food<br>and Forest Policies;<br>Regions and<br>Autonomous<br>Provinces;<br>AGEA and OPR                         | ++                    |
| RDP -<br>allowances and<br>agri-<br>environmental<br>measures (in<br>force)   | Soil management to improve crop adaptation, improve the efficient use of nutrients, keeping soil in good condition preventing erosion, improve fertility naturally, avoid synthetic inputs, promote crop diversification, maintaining and improving the surface of grazing land, maintain habitats in backward areas and subject to specific constraints.                  | CAP-pillar II -<br>PSR<br>PSR 14-20:<br>measures Art.<br>28-29-30-31-32<br>Reg.<br>1305/2013/UE                             | Voluntary<br>commitments<br>remunerated on<br>the basis of<br>increased costs<br>and lost profit      | RDPs –<br>Reg. (UE)<br>n.1305/2013                                                                                      | Ministry of<br>Agriculture, Food<br>and Forest Policies;<br>Regions and<br>Autonomous<br>Provinces;<br>AGEA and OPR                         | +++                   |
| Fruit & vegetables CMO - Environmental Framework (in force)                   | Soil protection, protection of water resources, management of waste aimed at environmental protection, mitigation of Climate Change and air quality preservation, conservation/restoration biodiversity                                                                                                                                                                    | About 168.000<br>Ha (2011)                                                                                                  | Voluntary<br>commitments<br>remunerated on<br>the basis of the<br>additional costs<br>and lost profit | Environment<br>al guidelines<br>under the<br>National<br>Strategy fruit<br>and<br>vegetables<br>09-13 - DM<br>5460/2011 | Ministry of<br>Agriculture, Food<br>and Forest Policies<br>- Regions and<br>Autonomous<br>Provinces - AGEA<br>and OPR-                      | +                     |
| EMFF Operational Programmes (programmed as part of the Partnership Agreement) | Reduce CO <sub>2</sub> emissions through:  • reducing over-exploitation of fish resources capacity,  • investments on board,  • audit and energy efficiency schemes,  • modernization or replacement of main or auxiliary engines  • economic incentives for organic aquaculture production methodologies                                                                  | National fleet:<br>12.689 units<br>(01.03.2014) -<br>Aquaculture<br>enterprises                                             | Voluntary<br>commitments                                                                              | Operational programmes                                                                                                  | Ministry of<br>Agriculture, Food<br>and Forest Policies -<br>Regions and<br>Autonomous<br>Provinces - AGEA<br>and OPR - Port<br>authorities | +                     |

# 8.1 Partnership Agreement: "Carbon" thematic objective

In the rural development policies, the Thematic Objective n.4, will provide a significant contribution, although not exclusively, to reduce emissions of greenhouse gases and pollutants and to stimulate conservation and carbon sequestration in agriculture and forestry.

In this context, all forestry or agronomic interventions will be considered, supported with specific agriculture and forestry measures (including the active management of forests, in line with the strategy outlined in the National Framework).


In particular, we refer to those forestry and agri-environment-climate measures capable of acting through two mechanisms: reducing emissions of climate-changing gases; promote an increase of the absorption of atmospheric carbon dioxide.

The goal is to encourage innovative measures and agricultural techniques (such as introduction of legumes in crop plans, controlled turfing, zero tillage, minimum tillage, rational use of fertilizers and pesticides, etc.) less impactful on carbon dioxide emissions and on the denitrification and mineralization of soil organic matter. Concerning the absorption of CO<sub>2</sub>, the target is to encourage agricultural and forestry practices useful to increase the soil organic carbon and the biomass production in agricultural and forestry systems.

Good results will be achieved if the actions will be supported by adequate operative actions, such as training (to enhance the skills of human resources), technical support to governance processes, strengthening of financial management, with particular reference to the planning efficiency and management of expenditures.

# 9. Timetables

The following timetables sit within the overall planning for the implementation of the EU LULUCF Decision. The timetable is realized for the measures which are being implemented (or are yet implemented) under the policies, and the abovementioned measures and planned to be implemented in the period 2013-2020.



### 10. References

European Parliament and Council, 2013. Decision n. 529/2013/EU f the European Parliament and of the Council of of 21 May 2013 on accounting rules on greenhouse gas emissions and removals resulting from activities relating to land use, land-use change and forestry and on information concerning actions relating to those activities

#### Overview of national circumstances

Areté e DEIAgra (2008) Evaluation of the set aside measure 2000 to 2006, Rapporto finale per DG-Agricoltura e Sviluppo Rurale.

Council Regulation (EEC) No 2078/92 of 30 June 1992 on agricultural production methods compatible with the requirements of the protection of the environment and the maintenance of the countryside.

Council Regulation (EEC) No 1765/92 of 30 June 1992 establishing a support system for producers of certain arable crops.

Council Regulation (EC) No 1257/1999 of 17 May 1999 on support for rural development from the European Agricultural Guidance and Guarantee Fund (EAGGF) and amending and repealing certain Regulations.

Council Regulation (EC) No 1698/2005 of 20 September 2005 on support for rural development by the European Agricultural Fund for Rural Development (EAFRD)

Federici S, Vitullo M, Tulipano S, De Lauretis R, Seufert G, 2008. An approach to estimate carbon stocks change in forest carbon pools under the UNFCCC: the Italian case. iForest 1: 86-95 URL: <a href="http://www.sisef.it/forest@/show.php?id=466">http://www.sisef.it/forest@/show.php?id=466</a>

IPCC 2006, 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan

IPCC 2014, 2013 Revised Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds) Published: IPCC, Switzerland.

ISPRA, 2016. Italian Greenhouse Gas Inventory 1990-2014. National Inventory Report 2014. ISPRA

#### Past emissions and removals

Atti Parlamentari Camera dei Deputati n. 948. Proposta di Legge dei deputati Catania et al. Legge quadro in materia di valorizzazione delle aree agricole e di contenimento del consumo del suolo.

COM (2014) 179 final: "Action Plan For The Future Of Organic Production In The European Union.

COM(2006)231 final 'Thematic Strategy for Soil Protection'.

COM (2010) 2020: 'Europe 2020: A strategy for smart, sustainable and inclusive growth'.

ISPRA, 2016. Italian Greenhouse Gas Inventory 1990-2014. National Inventory Report 2014. ISPRA

ISTAT (2013) Esame delle abbinate proposte di legge C. 902 Bordo e C. 947 Catania, in materia di valorizzazione delle aree agricole e di contenimento del consumo del suolo. Audit dell'Istituto Nazionale di Statistica, Commissioni riunite VIII Commissione "Ambiente" e XIII Commissione "Agricoltura" della Camera dei Deputati, Roma dicembre 2013.

National Rural Network (2014) La programmazione finanziaria, l'avanzamento del bilancio comunitario e della spesa pubblica effettivamente sostenuta. Report trimestrale, quarto trimestre 2013. 11 febbraio 2014.

Regulation (EU) No 1305/2013 of the European Parliament and of the Council of 17 december 2013 on support for rural development by the European Agricultural Fund for rural development (EAFRD) and Repealing Council Regulation (EC) no 1698/2005

Regulation (Eu) No 1307/2013 of the European Parliament and of the Council of 17 December 2013 establishing rules for direct payments to farmers under support schemes within the framework of the common agricultural policy and repealing Council Regulation (EC) No 637/2008 and Council Regulation (EC) No 73/2009

## **Projections**

European Parliament and Council, 2004. Decision n. 280/2004/EC of the European Parliament and of the Council of 11 February 2004 concerning a mechanism for monitoring Community greenhouse gas emissions and for implementing the Kyoto Protocol

ISPRA, 2016. Italian Greenhouse Gas Inventory 1990-2014. National Inventory Report 2014. ISPRA

MATTM, 2013. Sixth National Communication under the UN Framework Convention on Climate Change Italy December 2013.

UNFCCC, 2011. Report of the technical assessment of the forest management reference level submission of Italy submitted in 2011

## Identification of mitigation potential

Alberti, G., Leronni, V., Piazzi, M., Petrella, F., Mairota, P., Peressotti, A., Piussi, P., Valentini, R., Gristina, L., Mantia, T.L., Novara, A., Rühl, J. Impact of woody encroachment on soil organic carbon and nitrogen in abandoned agricultural lands along a rainfall gradient in Italy (2011) Regional Environmental Change, 11 (4), pp. 917-924. 83555179242&partnerID=40&md5=1df4b3313b9238a27a139480c4801fb1

Barbera, V. et al. Long-term cropping systems and tillage management effects on soil organic carbon stock and steady state level of C sequestration rates in a semiarid environment. Land Degradation & Develop. 23: 82–91 (2012).

Borrelli L, Colecchia S., Troccoli A., Caradonna S., Papini R., Ventrella D., Dell'Abate M.T., Galeffi C., Tomasoni C., Farina R., 2011. "Effectiveness of the GAEC standard of cross compliance crop rotation s in maintaining organic matter levels in soils". Italian Journal of Agronomy 2011; volume 6(s1):e8

Callieris R.,et al., 2010. Produzioni biologiche italiane: dinamiche interne e prospettive commerciali sui mercati esteri. SINTERBIO Progetto. Bari: MiPAAF e CHIEAM-IAMB. Available from: www.interbio.it/share/img\_download/22\_pubblicazione\_interbio\_dic\_2010.pdf

Cardone G., Pugliese P., Triantafyllidis A., 2010. Lo stato dell'arte della programmazione e dell'attuazione delle misure rilevanti per l'agricoltura biologica nei PSR regionali: prime valutazioni e riflessioni b) Sintesi della discussione dei tavoli tecnici In: L'agricoltura biologica nelle politiche di sviluppo rurale comunitarie tra present e e futuro - Esperienze della programmazione 2007-2013 e prospettive nella riforma della PAC, Atti di seminario 19-20 maggio 2010, Roma: Progetto INTERBIO, MiPAAF, CIHEAM-IAMB, IFOAM EU Group, 37-51. Available from: <a href="https://www.interbio.it/share/img\_download/interbio\_pac.pdf">www.interbio.it/share/img\_download/interbio\_pac.pdf</a>

Chiti T, Gardin L, Perugini L, Quaratino R, Vaccari F.P., Miglietta F, Valentini R, (2011). Soil organic carbon stock assessment for the different cropland land uses in Italy. Biology and fertility of Soils - DOI

#### 10.1007/s00374-011-0599-4

Coleman, K., Jenkinson, D.S., Crocker, G.J., Grace, P.R., Klir, J., Korschens, M., Poulton, P.R., Richter, D.D., 1997. Simulating trends in soil organic carbon in long-term experiments using RothC-26.3. Geoderma 81 (1–2), 29–44.

Commissione Europea, 2013. Riforma della politica agricola comune (PAC): accordo politico raggiunto sugli ultimi punti rimasti. Available from: <a href="https://www.europa.eu/rapid/press-release">www.europa.eu/rapid/press-release</a> IP-13-864 it.htm

De Filippis F., and Sandali P., 2013. La nuova PAC: Un'analisi dell'accordo del 26 giugno 2013. Gruppo 2013. Working Paper., n.21 agosto 2013. Roma: Gruppo 2013. Available from: www.gruppo2013.it/working-paper/Documents/WP%20n.%2 021 agosto2013.pdf

Di Bene, C., Blasi, E., Marchetti, A., Lupia, F., D'Angelo, L., Farina, R., 2014. Gestione dei suoli agricoli e contabilizzazione degli stock di carbonio. Proposta operativa a supporto delle politiche agro-climatico-ambientali. Agriregionieuropa anno 10 n°36, Mar 2014

Eurostat, 2013. Agriculture statistical database. Luxembourg: Eurostat. Available from: epp eurostat.ec.europa.eu/portal/page/portal/agriculture/data/database Greenreport, 2013a.

Farina R., Coleman K., Whitmore A. P., 2013. Modifications of the model RothC for simulations of C dynamic in Mediterranean regions. Geoderma, 200-201 (2013) 18–3

Francaviglia, R., Coleman, K., Whitmore, A.P., Doro, L., Urracci, G., Rubino, M., Ledda, L., 2012. Changes in soil organic carbon and climate change – Application of the RothC model in agro-silvo-pastoral Mediterranean systems. Agric. Syst. 112, 48–54.

Francaviglia, R., Benedetti, A., Doro, L., Madrau, S., Ledda, L. 2014. Influence of land use on soil quality and stratification ratios under agro-silvo-pastoral Mediterranean management systems. Agric. Ecosyst. Environ. 183, 86–92.

Guo L. B. and Gifford R.M. (2002) Soil carbon stocks and land use change: a meta analysis. Global Change Biology. Volume 8, Issue 4, April 2002, pages: 345–360.

Greenreport, 2013b. Riforma della PAC: faccia a faccia tra associazioni e De Girolamo. Livorno: Greenreport. 15 novembre 2013. Available from: www.greenreport.it/news/agricoltura/riforma-pacambientalisti-de-girolamo

IPCC, 2003. Good Practice Guidance for Land Use, Land-Use Change and Forestry. IPCC Technical Support Unit, Kanagawa, Japan.

Intergovernmental Panel on Climate Change (IPCC) (2006), 2006 IPCC Guidelines for National Grreenhouse Gas Inventories, Vol. 4 Agriculture, Forestry and Other Land Use, edited by S. Egglrdyon et al., Inst. For Global Environ. Strategies, Hayama, Japan.

IPCC 2007. Climate Change 2007-Mitigation of Climate Change: Working Group III Contribution to the Fourth Assessment Report of the IPCC. Intergovernmental Panel on Climate Change - 2007 - Cambridge University Press

Jenkinson, D.S., Harris, H.C., Ryan, J., McNeill, A.M., Pilbeam, C.J., Coleman, K., 1999. Organic matter turnover in a calcareous clay soil from Syria under a two-course cereal rotation. Soil Biology and Biochemistry 31 (5), 687–693.

IFOAM, 2013, Development programmes and organic farming in italy. Gianluigi Cardone and Patrizia Pugliese

Lopez-Bellido, R.J., Fontan, J.M., Lopez-Bellido, F.J., Lopez-Bellido, L., 2010. Carbon sequestration by tillage, rotation, and nitrogen fertilization in a Mediterranean Vertisol. Agronomy Journal 102 (1), 310–318.

Lugato E, Berti A. (2008) Potential Carbon Sequestration In A Cultivated Soil Under Different Climate Change Scenarios: A Modelling Approach For Evaluating Promising Management Practices In North-East Italy. Agriculture, Ecosystems & Environment Vol. 128 97–103

Mazzoncini, M. et al. Long-term effect of tillage, nitrogen fertilization and cover crops on soil organic carbon and total nitrogen content. Soil & Tillage Research 114 (2011) 165-174.

MiPAAF Ismea (2012), Ricognizione degli studi e delle ricerche riguardanti il potenziale di mitigazione di talune pratiche colturali e delle lavorazioni (Progetto Speciale)".

MiPAAF National Rural Network (2011) Libro bianco: Sfide ed opportunità dello sviluppo rurale per la mitigazione e l'adattamento ai cambiamenti climatici", Agosto 2011.

National Rural Network (2010) Rapporto di applicazione della condizionalità in Italia", September 2010.

National Rural Network (2012). BIOREPORT 2012 L'agricoltura biologica in Italia. Roma: MiPAAF. Available from: www.federbio.it/files/794.pdf

SINAB, 2013, Bio in cifre 2012. Roma: MiPAAF. Available from: www.sinab.it

Rural development plans 2007-2013. Available from: www.reterurale.it/regioni

Valutazione del PSR della Regione Lombardia 2007-2013, Rapporto di Valutazione Intermedia. Dicembre 2010. Direzione Generale Agricoltura

#### List of measures

MiPAAF Ismea (2012), Ricognizione degli studi e delle ricerche riguardanti il potenziale di mitigazione di talune pratiche colturali e delle lavorazioni (Progetto Speciale).

MiPAAF National Rural Network (2011) Libro bianco: Sfide ed opportunità dello sviluppo rurale per la mitigazione e l'adattamento ai cambiamenti climatici", Agosto 2011.

National Rural Network (2010) Rapporto di applicazione della condizionalità in Italia", September 2010.

Rural development plans 2007-2013

Regulation (EU) No 1305/2013 of the European Parliament and of the Council of 17 December 2013 on support for rural development by the European Agricultural Fund for rural development (EAFRD) and Repealing Council Regulation (EC) no 1698/2005

# Existing and planned policies and their impacts

Evaluation report of National Strategy for sustainable operational programmes in the fruit and vegetable sector (2012), pursuant to articles 125-127 of Regulation (EU) No 543/2011. <a href="http://ec.europa.eu/agriculture/fruit-and-vegetables/country-files/it/evaluation-report-of-national-strategy-2012-main-it\_en.pdf">http://ec.europa.eu/agriculture/fruit-and-vegetables/country-files/it/evaluation-report-of-national-strategy-2012-main-it\_en.pdf</a>

Partnership Agreement for the new Structural Funds programming 2014-2020

Regulation (EU) No 1306/2013 of the European Parliament and of the Council of 17 december 2013 on the financing, management and monitoring of the common agricultural policy and repealing Council Regulations (EEC) No 352/78, (EC) No 165/94, (EC) No 2799/98, (EC) No 814/2000, (EC) No 1290/2005 and (EC) No 485/2008

Regulation (EU) No 1305/2013 of the European Parliament and of the Council of 17 december 2013 on support for rural development by the European Agricultural Fund for rural development (EAFRD) and

Repealing Council Regulation (EC) no 1698/2005

Regulation (Eu) No 1307/2013 of the European Parliament and of the Council of 17 December 2013 establishing rules for direct payments to farmers under support schemes within the framework of the common agricultural policy and repealing Council Regulation (EC) No 637/2008 and Council Regulation (EC) No 73/2009